712 research outputs found
Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches
Finding the common structural brain connectivity network for a given
population is an open problem, crucial for current neuro-science. Recent
evidence suggests there's a tightly connected network shared between humans.
Obtaining this network will, among many advantages , allow us to focus
cognitive and clinical analyses on common connections, thus increasing their
statistical power. In turn, knowledge about the common network will facilitate
novel analyses to understand the structure-function relationship in the brain.
In this work, we present a new algorithm for computing the core structural
connectivity network of a subject sample combining graph theory and statistics.
Our algorithm works in accordance with novel evidence on brain topology. We
analyze the problem theoretically and prove its complexity. Using 309 subjects,
we show its advantages when used as a feature selection for connectivity
analysis on populations, outperforming the current approaches
ABCD Neurocognitive Prediction Challenge 2019: Predicting individual residual fluid intelligence scores from cortical grey matter morphology
We predicted residual fluid intelligence scores from T1-weighted MRI data
available as part of the ABCD NP Challenge 2019, using morphological similarity
of grey-matter regions across the cortex. Individual structural covariance
networks (SCN) were abstracted into graph-theory metrics averaged over nodes
across the brain and in data-driven communities/modules. Metrics included
degree, path length, clustering coefficient, centrality, rich club coefficient,
and small-worldness. These features derived from the training set were used to
build various regression models for predicting residual fluid intelligence
scores, with performance evaluated both using cross-validation within the
training set and using the held-out validation set. Our predictions on the test
set were generated with a support vector regression model trained on the
training set. We found minimal improvement over predicting a zero residual
fluid intelligence score across the sample population, implying that structural
covariance networks calculated from T1-weighted MR imaging data provide little
information about residual fluid intelligence.Comment: 8 pages plus references, 3 figures, 2 tables. Submission to the ABCD
Neurocognitive Prediction Challenge at MICCAI 201
Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification
There is no consensus on how to construct structural brain networks from
diffusion MRI. How variations in pre-processing steps affect network
reliability and its ability to distinguish subjects remains opaque. In this
work, we address this issue by comparing 35 structural connectome-building
pipelines. We vary diffusion reconstruction models, tractography algorithms and
parcellations. Next, we classify structural connectome pairs as either
belonging to the same individual or not. Connectome weights and eight
topological derivative measures form our feature set. For experiments, we use
three test-retest datasets from the Consortium for Reliability and
Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare
pairwise classification results to a commonly used parametric test-retest
measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure
Structural subnetwork evolution across the life-span: rich-club, feeder, seeder
The impact of developmental and aging processes on brain connectivity and the
connectome has been widely studied. Network theoretical measures and certain
topological principles are computed from the entire brain, however there is a
need to separate and understand the underlying subnetworks which contribute
towards these observed holistic connectomic alterations. One organizational
principle is the rich-club - a core subnetwork of brain regions that are
strongly connected, forming a high-cost, high-capacity backbone that is
critical for effective communication in the network. Investigations primarily
focus on its alterations with disease and age. Here, we present a systematic
analysis of not only the rich-club, but also other subnetworks derived from
this backbone - namely feeder and seeder subnetworks. Our analysis is applied
to structural connectomes in a normal cohort from a large, publicly available
lifespan study. We demonstrate changes in rich-club membership with age
alongside a shift in importance from 'peripheral' seeder to feeder subnetworks.
Our results show a refinement within the rich-club structure (increase in
transitivity and betweenness centrality), as well as increased efficiency in
the feeder subnetwork and decreased measures of network integration and
segregation in the seeder subnetwork. These results demonstrate the different
developmental patterns when analyzing the connectome stratified according to
its rich-club and the potential of utilizing this subnetwork analysis to reveal
the evolution of brain architectural alterations across the life-span
Influence of wiring cost on the large-scale architecture of human cortical connectivity
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain
Multiple dynamical time-scales in networks with hierarchically nested modular organization
Many natural and engineered complex networks have intricate mesoscopic
organization, e.g., the clustering of the constituent nodes into several
communities or modules. Often, such modularity is manifested at several
different hierarchical levels, where the clusters defined at one level appear
as elementary entities at the next higher level. Using a simple model of a
hierarchical modular network, we show that such a topological structure gives
rise to characteristic time-scale separation between dynamics occurring at
different levels of the hierarchy. This generalizes our earlier result for
simple modular networks, where fast intra-modular and slow inter-modular
processes were clearly distinguished. Investigating the process of
synchronization of oscillators in a hierarchical modular network, we show the
existence of as many distinct time-scales as there are hierarchical levels in
the system. This suggests a possible functional role of such mesoscopic
organization principle in natural systems, viz., in the dynamical separation of
events occurring at different spatial scales.Comment: 10 pages, 4 figure
Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies
Exponential Random Graph Modeling for Complex Brain Networks
Exponential random graph models (ERGMs), also known as p* models, have been
utilized extensively in the social science literature to study complex networks
and how their global structure depends on underlying structural components.
However, the literature on their use in biological networks (especially brain
networks) has remained sparse. Descriptive models based on a specific feature
of the graph (clustering coefficient, degree distribution, etc.) have dominated
connectivity research in neuroscience. Corresponding generative models have
been developed to reproduce one of these features. However, the complexity
inherent in whole-brain network data necessitates the development and use of
tools that allow the systematic exploration of several features simultaneously
and how they interact to form the global network architecture. ERGMs provide a
statistically principled approach to the assessment of how a set of interacting
local brain network features gives rise to the global structure. We illustrate
the utility of ERGMs for modeling, analyzing, and simulating complex
whole-brain networks with network data from normal subjects. We also provide a
foundation for the selection of important local features through the
implementation and assessment of three selection approaches: a traditional
p-value based backward selection approach, an information criterion approach
(AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF
approach serves as the best method given the scientific interest in being able
to capture and reproduce the structure of fitted brain networks
- …