686 research outputs found

    Is the third coefficient of the Jones knot polynomial a quantum state of gravity?

    Get PDF
    Some time ago it was conjectured that the coefficients of an expansion of the Jones polynomial in terms of the cosmological constant could provide an infinite string of knot invariants that are solutions of the vacuum Hamiltonian constraint of quantum gravity in the loop representation. Here we discuss the status of this conjecture at third order in the cosmological constant. The calculation is performed in the extended loop representation, a generalization of the loop representation. It is shown that the the Hamiltonian does not annihilate the third coefficient of the Jones polynomal (J3J_3) for general extended loops. For ordinary loops the result acquires an interesting geometrical meaning and new possibilities appear for J3J_3 to represent a quantum state of gravity.Comment: 22 page

    The Extended Loop Representation of Quantum Gravity

    Full text link
    A new representation of Quantum Gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group, that we call the Extended Loop Group, behaves locally as an infinite dimensional Lie group. Quantum Gravity can be realized on the state space of extended loop dependent wavefunctions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and hamiltonian constraints take a very simple form and allow to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. The practical calculation advantages allows to find a new solution to the Wheeler-DeWitt equation. Moreover, the extended representation puts in a precise framework some of the regularization problems of the loop representation. We show that the solutions are generalized knot invariants, smooth in the extended variables, and any framing is unnecessary.Comment: 27 pages, report IFFC/94-1

    Loop Representations for 2+1 Gravity on a Torus

    Get PDF
    We study the loop representation of the quantum theory for 2+1 dimensional general relativity on a manifold, M=T2×RM = {\cal T}^2 \times {\cal R}, where T2{\cal T}^2 is the torus, and compare it with the connection representation for this system. In particular, we look at the loop transform in the part of the phase space where the holonomies are boosts and study its kernel. This kernel is dense in the connection representation and the transform is not continuous with respect to the natural topologies, even in its domain of definition. Nonetheless, loop representations isomorphic to the connection representation corresponding to this part of the phase space can still be constructed if due care is taken. We present this construction but note that certain ambiguities remain; in particular, functions of loops cannot be uniquely associated with functions of connections.Comment: 24 journal or 52 preprint pages, revtex, SU-GP-93/3-

    Extended Loops: A New Arena for Nonperturbative Quantum Gravity

    Get PDF
    We propose a new representation for gauge theories and quantum gravity. It can be viewed as a generalization of the loop representation. We make use of a recently introduced extension of the group of loops into a Lie Group. This extension allows the use of functional methods to solve the constraint equations. It puts in a precise framework the regularization problems of the loop representation. It has practical advantages in the search for quantum states. We present new solutions to the Wheeler-DeWitt equation that reinforce the conjecture that the Jones Polynomial is a state of nonperturbative quantum gravity.Comment: 12pp, Revtex, no figures, CGPG-93/12-

    Uniform discretizations: a quantization procedure for totally constrained systems including gravity

    Get PDF
    We present a new method for the quantization of totally constrained systems including general relativity. The method consists in constructing discretized theories that have a well defined and controlled continuum limit. The discrete theories are constraint-free and can be readily quantized. This provides a framework where one can introduce a relational notion of time and that nevertheless approximates in a well defined fashion the theory of interest. The method is equivalent to the group averaging procedure for many systems where the latter makes sense and provides a generalization otherwise. In the continuum limit it can be shown to contain, under certain assumptions, the ``master constraint'' of the ``Phoenix project''. It also provides a correspondence principle with the classical theory that does not require to consider the semiclassical limit.Comment: 4 pages, Revte

    Canonical quantum gravity in the Vassiliev invariants arena: II. Constraints, habitats and consistency of the constraint algebra

    Get PDF
    In a companion paper we introduced a kinematical arena for the discussion of the constraints of canonical quantum gravity in the spin network representation based on Vassiliev invariants. In this paper we introduce the Hamiltonian constraint, extend the space of states to non-diffeomorphism invariant ``habitats'' and check that the off-shell quantum constraint commutator algebra reproduces the classical Poisson algebra of constraints of general relativity without anomalies. One can therefore consider the resulting set of constraints and space of states as a consistent theory of canonical quantum gravity.Comment: 20 Pages, RevTex, many figures included with psfi

    Effect of carrier recombination on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3

    Get PDF
    Transient reflectivity (TR) from thin films (6 - 40 nm thick) of the topological insulator Bi2Se3 reveal ultrafast carrier dynamics, which suggest the existence of both radiative and non-radiative recombination between electrons residing in the upper cone of initially unoccupied high energy Dirac surface states (SS) and holes residing in the lower cone of occupied low energy Dirac SS. The modeling of measured TR traces allowed us to conclude that recombination is induced by the depletion of bulk electrons in films below ~20 nm thick due to the charge captured on the surface defects. We predict that such recombination processes can be observed using time-resolved photoluminescence techniques

    Classical Loop Actions of Gauge Theories

    Full text link
    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.Comment: LaTeX 14 page
    corecore