4,318 research outputs found

### LTLf and LDLf Synthesis under Partial Observability

In this paper, we study synthesis under partial observability for logical specifications over finite traces expressed in LTLf/LDLf. This form of synthesis can be seen as a generalization of planning under partial observability in nondeterministic domains, which is known to be 2EXPTIME-complete. We start by showing that the usual "belief-state construction" used in planning under partial observability works also for general LTLf/LDLf synthesis, though with a jump in computational complexity from 2EXPTIME to 3EXPTIME. Then we show that the belief-state construction can be avoided in favor of a direct automata construction which exploits projection to hide unobservable propositions. This allow us to prove that the problem remains 2EXPTIME-complete. The new synthesis technique proposed is effective and readily implementable

### Abstraction in situation calculus action theories

We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agentâ€™s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

### Bounded Situation Calculus Action Theories

In this paper, we investigate bounded action theories in the situation
calculus. A bounded action theory is one which entails that, in every
situation, the number of object tuples in the extension of fluents is bounded
by a given constant, although such extensions are in general different across
the infinitely many situations. We argue that such theories are common in
applications, either because facts do not persist indefinitely or because the
agent eventually forgets some facts, as new ones are learnt. We discuss various
classes of bounded action theories. Then we show that verification of a
powerful first-order variant of the mu-calculus is decidable for such theories.
Notably, this variant supports a controlled form of quantification across
situations. We also show that through verification, we can actually check
whether an arbitrary action theory maintains boundedness.Comment: 51 page

### Hierarchical agent supervision

Agent supervision is a form of control/customization where a supervisor restricts the behavior of an agent to enforce certain requirements, while leaving the agent as much autonomy as possible. To facilitate supervision, it is often of interest to consider hierarchical models where a high level abstracts over low-level behavior details. We study hierarchical agent supervision in the context of the situation calculus and the ConGolog agent programming language, where we have a rich first-order representation of the agent state. We define the constraints that ensure that the controllability of in-dividual actions at the high level in fact captures the controllability of their implementation at the low level. On the basis of this, we show that we can obtain the maximally permissive supervisor by first considering only the high-level model and obtaining a high- level supervisor and then refining its actions locally, thus greatly simplifying the supervisor synthesis task

### Abstraction in situation calculus action theories

We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agentâ€™s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

### Progression and Verification of Situation Calculus Agents with Bounded Beliefs

We investigate agents that have incomplete information and make decisions based on their beliefs expressed as situation calculus bounded action theories. Such theories have an infinite object domain, but the number of objects that belong to fluents at each time point is bounded by a given constant. Recently, it has been shown that verifying temporal properties over such theories is decidable. We take a first-person view and use the theory to capture what the agent believes about the domain of interest and the actions affecting it. In this paper, we study verification of temporal properties over online executions. These are executions resulting from agents performing only actions that are feasible according to their beliefs. To do so, we first examine progression, which captures belief state update resulting from actions in the situation calculus. We show that, for bounded action theories, progression, and hence belief states, can always be represented as a bounded first-order logic theory. Then, based on this result, we prove decidability of temporal verification over online executions for bounded action theories. Â© 2015 The Author(s

### On First-Order ÎĽ-Calculus over Situation Calculus Action Theories

In this paper we study verification of situation calculus action theories against first-order mu-calculus with quantification across situations. Specifically, we consider mu-La and mu-Lp, the two variants of mu-calculus introduced in the literature for verification of data-aware processes. The former requires that quantification ranges over objects in the current active domain, while the latter additionally requires that objects assigned to variables persist across situations. Each of these two logics has a distinct corresponding notion of bisimulation. In spite of the differences we show that the two notions of bisimulation collapse for dynamic systems that are generic, which include all those systems specified through a situation calculus action theory. Then, by exploiting this result, we show that for bounded situation calculus action theories, mu-La and mu-Lp have exactly the same expressive power. Finally, we prove decidability of verification of mu-La properties over bounded action theories, using finite faithful abstractions. Differently from the mu-Lp case, these abstractions must depend on the number of quantified variables in the mu-La formula

- â€¦