1,821 research outputs found

    Little Higgs Review

    Full text link
    Recently there has been renewed interest in the possibility that the Higgs particle of the Standard Model is a pseudo-Nambu-Goldstone boson. This development was spurred by the observation that if certain global symmetries are broken only by the interplay between two or more coupling constants, then the Higgs mass-squared is free from quadratic divergences at one loop. This "collective symmetry" breaking is the essential ingredient in little Higgs theories, which are weakly coupled extensions of the Standard Model with little or no fine tuning, describing physics up to an energy scale ~10 TeV. Here we give a pedagogical introduction to little Higgs theories. We review their structure and phenomenology, focusing mainly on the SU(3) theory, the Minimal Moose, and the Littlest Higgs as concrete examples.Comment: To appear in Annual Review of Nuclear and Particle Science; contains TASI'05 Little Higgs lecture notes, 44 page

    Four-nucleon contact interactions from holographic QCD

    Full text link
    We calculate the low energy constants of four-nucleon interactions in an effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to obtain meson-nucleon interactions and then integrate out massive mesons to obtain the four-nucleon interactions in 4D. We end up with two low energy constants at the leading order and seven of them at the next leading order, which is consistent with the effective chiral Lagrangian. The values of the low energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page

    One Loop Renormalization of the Littlest Higgs Model

    Get PDF
    In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.Comment: 23 pages, 17 eps figure

    Axion-Higgs Unification

    Get PDF
    In theories with no fundamental scalars, one gauge group can become strong at a large scale Lambda and spontaneously break a global symmetry, producing the Higgs and the axion as composite pseudo-Nambu-Goldstone bosons. We show how KSVZ and DFSZ axion models can be naturally realised. The assumption Lambda around 10^{11} GeV is phenomenologically favoured because: a) The axion solves the QCD theta problem and provides the observed DM abundance; b) The observed Higgs mass is generated via RGE effects from a small Higgs quartic coupling at the compositeness scale, provided that the Higgs mass term is fine-tuned to be of electroweak size; c) Lepton, quark as well as neutrino masses can be obtained from four-fermion operators at the compositeness scale. d) The extra fermions can unify the gauge couplings.Comment: 19 pages. Refs. added and eq. 3.6 fixe

    Tests of the Gravitational Inverse-Square Law

    Full text link
    We review recent experimental tests of the gravitational inverse-square law and the wide variety of theoretical considerations that suggest the law may break down in experimentally accessible regions.Comment: 81 pages, 10 figures, submitted by permission of the Annual Review of Nuclear and Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 53, to be published in December 2003 by Annual Reviews, http://AnnualReviews.or

    Bounding wide composite vector resonances at the LHC

    Get PDF
    In composite Higgs models (CHMs), electroweak precision data generically push colourless composite vector resonances to a regime where they dominantly decay into pairs of light top partners. This greatly attenuates their traces in canonical collider searches, tailored for narrow resonances promptly decaying into Standard Model final states. By reinterpreting the CMS same-sign dilepton (SS2â„“\ell) analysis at the Large Hadron Collider (LHC), originally designed to search for top partners with electric charge 5/35/3, we demonstrate its significant coverage over this kinematical regime. We also show the reach of the 13 TeV run of the LHC, with various integrated luminosity options, for a possible upgrade of the SS2â„“\ell search. The top sector of CHMs is found to be more fine-tuned in the presence of colourless composite resonances in the few TeV range.Comment: 9 pages, 5 figures. Minor corrections for publication in JHE

    Discovering the composite Higgs through the decay of a heavy fermion

    Full text link
    A possible composite nature of the Higgs could be revealed at the early stage of the LHC, by analyzing the channels where the Higgs is produced from the decay of a heavy fermion. The Higgs production from a singly-produced heavy bottom, in particular, proves to be a promising channel. For a value \lambda=3 of the Higgs coupling to a heavy bottom, for example, we find that, considering a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible at the 8 TeV LHC with 30 fb^{-1} if the heavy bottom is lighter than roughly 530 GeV (while an observation is possible for heavy bottom masses up to 650 GeV). Such a relatively light heavy bottom is realistic in composite Higgs models of the type considered and, up to now, experimentally allowed. At \sqrt{s}=14 TeV the LHC sensitivity on the channel increases significantly. With \lambda=3 a discovery can occur, with 100 fb^{-1}, for heavy bottom masses up to 1040 GeV. In the case the heavy bottom was as light as 500 GeV, the 14 TeV LHC would be sensitive to the measure of the \lambda\ coupling in basically the full range \lambda>1 predicted by the theory.Comment: 25 pp. v2: Minor changes. v3: Version accepted for publication in JHEP. v4: typos fixe

    Spin 3/2 Baryons and Form Factors in AdS/QCD

    Get PDF
    We study the 5D Rarita-Schwinger fields to describe spin 3/2 baryons in AdS/QCD. We calculate the spectrum of spin 3/2 baryons (Delta resonances) and their form factors, together with meson-baryon couplings from AdS/QCD. The transition form-factors between Delta and nucleon are evaluated. Both pion and rho meson couplings have the same origin in the bulk and hence unified. The numerical values for the meson-baryon transition couplings are consistent with the values obtained from other methods. We also predict the numerical values of some new couplings associated with Delta resonances.Comment: 29 pages, 6 figure

    Model-Independent Bounds on a Light Higgs

    Get PDF
    We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constructed a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative operators in the effective Lagrangian, references adde
    • …
    corecore