64 research outputs found

    Factorization and the Dressing Method for the Gel'fand-Dikii Hierarch

    Full text link
    The isospectral flows of an nthn^{th} order linear scalar differential operator LL under the hypothesis that it possess a Baker-Akhiezer function were originally investigated by Segal and Wilson from the point of view of infinite dimensional Grassmanians, and the reduction of the KP hierarchy to the Gel'fand-Dikii hierarchy. The associated first order systems and their formal asymptotic solutions have a rich Lie algebraic structure which was investigated by Drinfeld and Sokolov. We investigate the matrix Riemann-Hilbert factorizations for these systems, and show that different factorizations lead respectively to the potential, modified, and ordinary Gel'fand-Dikii flows. Lie algebra decompositions (the Adler-Kostant-Symes method) are obtained for the modified and potential flows. For n>3n>3 the appropriate factorization for the Gel'fand-Dikii flows is not a group factorization, as would be expected; yet a modification of the dressing method still works. A direct proof, based on a Fredholm determinant associated with the factorization problem, is given that the potentials are meromorphic in xx and in the time variables. Potentials with Baker-Akhiezer functions include the multisoliton and rational solutions, as well as potentials in the scattering class with compactly supported scattering data. The latter are dense in the scattering class

    Heat flow method to Lichnerowicz type equation on closed manifolds

    Full text link
    In this paper, we establish existence results for positive solutions to the Lichnerowicz equation of the following type in closed manifolds -\Delta u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M, where p>1,q>0p>1, q>0, and A(x)>0A(x)>0, B(x)≥0B(x)\geq0 are given smooth functions. Our analysis is based on the global existence of positive solutions to the following heat equation {ll} u_t-\Delta u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M\times\mathbb{R}^{+}, u(x,0)=u_0,\quad in\quad M with the positive smooth initial data u0u_0.Comment: 10 page

    Lattice gas model in random medium and open boundaries: hydrodynamic and relaxation to the steady state

    Full text link
    We consider a lattice gas interacting by the exclusion rule in the presence of a random field given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different densities. We show, in dimensions d≥3d \ge 3, that the rescaled empirical density field almost surely, with respect to the random field, converges to the unique weak solution of a non linear parabolic equation having the diffusion matrix determined by the statistical properties of the external random field and boundary conditions determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the stationary regime, almost surely with respect to the random field, converges to the solution of the associated stationary transport equation

    Block Toeplitz determinants, constrained KP and Gelfand-Dickey hierarchies

    Full text link
    We propose a method for computing any Gelfand-Dickey tau function living in Segal-Wilson Grassmannian as the asymptotics of block Toeplitz determinant associated to a certain class of symbols. Also truncated block Toeplitz determinants associated to the same symbols are shown to be tau function for rational reductions of KP. Connection with Riemann-Hilbert problems is investigated both from the point of view of integrable systems and block Toeplitz operator theory. Examples of applications to algebro-geometric solutions are given.Comment: 35 pages. Typos corrected, some changes in the introductio

    Multiplicity of supercritical fronts for reaction-diffusion equations in cylinders

    Get PDF
    We study multiplicity of the supercritical traveling front solutions for scalar reaction-diffusion equations in infinite cylinders which invade a linearly unstable equilibrium. These equations are known to possess traveling wave solutions connecting an unstable equilibrium to the closest stable equilibrium for all speeds exceeding a critical value. We show that these are, in fact, the only traveling front solutions in the considered problems for sufficiently large speeds. In addition, we show that other traveling fronts connecting to the unstable equilibrium may exist in a certain range of the wave speed. These results are obtained with the help of a variational characterization of such solutions

    Renormalizing Partial Differential Equations

    Full text link
    In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We discuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.Comment: 34 pages, Latex; [email protected]; [email protected]

    Can a Species Keep Pace with a Shifting Climate?

    Get PDF
    Consider a patch of favorable habitat surrounded by unfavorable habitat and assume that due to a shifting climate, the patch moves with a fixed speed in a one-dimensional universe. Let the patch be inhabited by a population of individuals that reproduce, disperse, and die. Will the population persist? How does the answer depend on the length of the patch, the speed of movement of the patch, the net population growth rate under constant conditions, and the mobility of the individuals? We will answer these questions in the context of a simple dynamic profile model that incorporates climate shift, population dynamics, and migration. The model takes the form of a growth-diffusion equation. We first consider a special case and derive an explicit condition by glueing phase portraits. Then we establish a strict qualitative dichotomy for a large class of models by way of rigorous PDE methods, in particular the maximum principle. The results show that mobility can both reduce and enhance the ability to track climate change that a narrow range can severely reduce this ability and that population range and total population size can both increase and decrease under a moving climate. It is also shown that range shift may be easier to detect at the expanding front, simply because it is considerably steeper than the retreating back

    Asymptotic stability of solitary waves

    Full text link
    We show that the family of solitary waves (1-solitons) of the Korteweg-de Vries equation is asymptotically stable. Our methods also apply for the solitary waves of a class of generalized Korteweg-de Vries equations, In particular, we study the case where f(u)=u p+1 / (p+1) , p =1, 2, 3 (and 30, with f ∈ C 4 ). The same asymptotic stability result for KdV is also proved for the case p =2 (the modified Korteweg-de Vries equation). We also prove asymptotic stability for the family of solitary waves for all but a finite number of values of p between 3 and 4. (The solitary waves are known to undergo a transition from stability to instability as the parameter p increases beyond the critical value p =4.) The solution is decomposed into a modulating solitary wave, with time-varying speed c(t) and phase γ( t ) ( bound state part ), and an infinite dimensional perturbation ( radiating part ). The perturbation is shown to decay exponentially in time, in a local sense relative to a frame moving with the solitary wave. As p →4 − , the local decay or radiation rate decreases due to the presence of a resonance pole associated with the linearized evolution equation for solitary wave perturbations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46489/1/220_2005_Article_BF02101705.pd
    • …
    corecore