318 research outputs found

    Renormalization study of two-dimensional convergent solutions of the porous medium equation

    Full text link
    In the focusing problem we study a solution of the porous medium equation ut=Δ(um)u_t=\Delta (u^m) whose initial distribution is positive in the exterior of a closed non-circular two dimensional region, and zero inside. We implement a numerical scheme that renormalizes the solution each time that the average size of the empty region reduces by a half. The initial condition is a function with circular level sets distorted with a small sinusoidal perturbation of wave number k3k\geq 3. We find that for nonlinearity exponents m smaller than a critical value which depends on k, the solution tends to a self-similar regime, characterized by rounded polygonal interfaces and similarity exponents that depend on m and on the discrete rotational symmetry number k. For m greater than the critical value, the final form of the interface is circular.Comment: 26 pages, Latex, 13 ps figure

    Transition between Two Oscillation Modes

    Full text link
    A model for the symmetric coupling of two self-oscillators is presented. The nonlinearities cause the system to vibrate in two modes of different symmetries. The transition between these two regimes of oscillation can occur by two different scenarios. This might model the release of vortices behind circular cylinders with a possible transition from a symmetric to an antisymmetric Benard-von Karman vortex street.Comment: 12 pages, 0 figure

    On the validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation

    Full text link
    We consider the problem of the speed selection mechanism for the one dimensional nonlinear diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u). It has been rigorously shown by Aronson and Weinberger that for a wide class of functions ff, sufficiently localized initial conditions evolve in time into a monotonic front which propagates with speed cc^* such that 2f(0)c<2sup(f(u)/u)2 \sqrt{f'(0)} \leq c^* < 2 \sqrt{\sup(f(u)/u)}. The lower value cL=2f(0)c_L = 2 \sqrt{f'(0)} is that predicted by the linear marginal stability speed selection mechanism. We derive a new lower bound on the the speed of the selected front, this bound depends on ff and thus enables us to assess the extent to which the linear marginal selection mechanism is valid.Comment: 9 pages, REVTE

    The Weakly Pushed Nature of "Pulled" Fronts with a Cutoff

    Get PDF
    The concept of pulled fronts with a cutoff ϵ\epsilon has been introduced to model the effects of discrete nature of the constituent particles on the asymptotic front speed in models with continuum variables (Pulled fronts are the fronts which propagate into an unstable state, and have an asymptotic front speed equal to the linear spreading speed vv^* of small linear perturbations around the unstable state). In this paper, we demonstrate that the introduction of a cutoff actually makes such pulled fronts weakly pushed. For the nonlinear diffusion equation with a cutoff, we show that the longest relaxation times τm\tau_m that govern the convergence to the asymptotic front speed and profile, are given by τm1[(m+1)21]π2/ln2ϵ\tau_m^{-1} \simeq [(m+1)^2-1] \pi^2 / \ln^2 \epsilon, for m=1,2,...m=1,2,....Comment: 4 pages, 2 figures, submitted to Brief Reports, Phys. Rev.

    The influence of fractional diffusion in Fisher-KPP equations

    Full text link
    We study the Fisher-KPP equation where the Laplacian is replaced by the generator of a Feller semigroup with power decaying kernel, an important example being the fractional Laplacian. In contrast with the case of the stan- dard Laplacian where the stable state invades the unstable one at constant speed, we prove that with fractional diffusion, generated for instance by a stable L\'evy process, the front position is exponential in time. Our results provide a mathe- matically rigorous justification of numerous heuristics about this model

    Minimal speed of fronts of reaction-convection-diffusion equations

    Get PDF
    We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form ut+μϕ(u)ux=uxx+f(u)u_t + \mu \phi(u) u_x = u_{xx} +f(u) for positive reaction terms with f(0>0f'(0 >0. The function ϕ(u)\phi(u) is continuous and vanishes at u=0u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assesment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if f(u)/f(0)+μϕ(u)<0f''(u)/\sqrt{f'(0)} + \mu \phi'(u) < 0, then the minimal speed is given by the linear value 2f(0)2 \sqrt{f'(0)}, and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case ut+μuux=uxx+u(1u)u_t + \mu u u_x = u_{xx} + u (1 -u). Results are also given for the density dependent diffusion case ut+μϕ(u)ux=(D(u)ux)x+f(u)u_t + \mu \phi(u) u_x = (D(u)u_x)_x +f(u).Comment: revised, new results adde

    Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain

    Get PDF
    We study front propagation and diffusion in the reaction-diffusion system A \leftrightharpoons A + A on a lattice. On each lattice site at most one A particle is allowed at any time. In this paper, we analyze the problem in the full range of parameter space, keeping the discrete nature of the lattice and the particles intact. Our analysis of the stochastic dynamics of the foremost occupied lattice site yields simple expressions for the front speed and the front diffusion coefficient which are in excellent agreement with simulation results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.

    Emergence of pulled fronts in fermionic microscopic particle models

    Full text link
    We study the emergence and dynamics of pulled fronts described by the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation in the microscopic reaction-diffusion process A + A A$ on the lattice when only a particle is allowed per site. To this end we identify the parameter that controls the strength of internal fluctuations in this model, namely, the number of particles per correlated volume. When internal fluctuations are suppressed, we explictly see the matching between the deterministic FKPP description and the microscopic particle model.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. E as a Rapid Communicatio

    Maximal and minimal spreading speeds for reaction diffusion equations in nonperiodic slowly varying media

    Full text link
    This paper investigates the asymptotic behavior of the solutions of the Fisher-KPP equation in a heterogeneous medium, tu=xxu+f(x,u),\partial_t u = \partial_{xx} u + f(x,u), associated with a compactly supported initial datum. A typical nonlinearity we consider is f(x,u)=μ0(ϕ(x))u(1u)f(x,u) = \mu_0 (\phi (x)) u(1-u), where μ0\mu_0 is a 1-periodic function and ϕ\phi is a C1\mathcal{C}^1 increasing function that satisfies limx+ϕ(x)=+\lim_{x\to +\infty} \phi (x) = +\infty and limx+ϕ(x)=0\lim_{x\to +\infty} \phi' (x) = 0. Although quite specific, the choice of such a reaction term is motivated by its highly heterogeneous nature. We exhibit two different behaviors for uu for large times, depending on the speed of the convergence of ϕ\phi at infinity. If ϕ\phi grows sufficiently slowly, then we prove that the spreading speed of uu oscillates between two distinct values. If ϕ\phi grows rapidly, then we compute explicitly a unique and well determined speed of propagation ww_\infty, arising from the limiting problem of an infinite period. We give a heuristic interpretation for these two behaviors

    Dynamical aspects of mean field plane rotators and the Kuramoto model

    Full text link
    The Kuramoto model has been introduced in order to describe synchronization phenomena observed in groups of cells, individuals, circuits, etc... We look at the Kuramoto model with white noise forces: in mathematical terms it is a set of N oscillators, each driven by an independent Brownian motion with a constant drift, that is each oscillator has its own frequency, which, in general, changes from one oscillator to another (these frequencies are usually taken to be random and they may be viewed as a quenched disorder). The interactions between oscillators are of long range type (mean field). We review some results on the Kuramoto model from a statistical mechanics standpoint: we give in particular necessary and sufficient conditions for reversibility and we point out a formal analogy, in the N to infinity limit, with local mean field models with conservative dynamics (an analogy that is exploited to identify in particular a Lyapunov functional in the reversible set-up). We then focus on the reversible Kuramoto model with sinusoidal interactions in the N to infinity limit and analyze the stability of the non-trivial stationary profiles arising when the interaction parameter K is larger than its critical value K_c. We provide an analysis of the linear operator describing the time evolution in a neighborhood of the synchronized profile: we exhibit a Hilbert space in which this operator has a self-adjoint extension and we establish, as our main result, a spectral gap inequality for every K>K_c.Comment: 18 pages, 1 figur
    corecore