98 research outputs found

    Coalescence and Anti-Coalescence Interference of Two-Photon Wavepacket in a Beam Splitter

    Get PDF
    We study a general theory on the interference of two-photon wavepacket in a beam splitter (BS). We find that the perfect coalescence interference requires a symmetric spectrum of two-photon wavepacket which can be entangled or un-entangled. Furthermore, we introduce a two-photon wavepacket with anti-symmetric spectrum, which is related with photon entanglement and shows a perfect anti-coalescence effect. The theory present uniform and complete explanation to two-photon interference.Comment: 5 pages, 2 figure

    Naturally-phasematched second harmonic generation in a whispering gallery mode resonator

    Get PDF
    We demonstrate for the first time natural phase matching for optical frequency doubling in a high-Q whispering gallery mode resonator made of Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt in-coupled continuous wave pump power. The observed saturation pump power of 3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This suggests an application of our frequency doubler as a source of non-classical light requiring only a low-power pump, which easily can be quantum noise limited. Our theoretical analysis of the three-wave mixing in a whispering gallery mode resonator provides the relative conversion efficiencies for frequency doubling in various modes

    Polarization state of a biphoton: quantum ternary logic

    Get PDF
    Polarization state of biphoton light generated via collinear frequency-degenerate spontaneous parametric down-conversion is considered. A biphoton is described by a three-component polarization vector, its arbitrary transformations relating to the SU(3) group. A subset of such transformations, available with retardation plates, is realized experimentally. In particular, two independent orthogonally polarized beams of type-I biphotons are transformed into a beam of type-II biphotons. Polarized biphotons are suggested as ternary analogs of two-state quantum systems (qubits)

    Two-photon diffraction and quantum lithography

    Get PDF
    We report a proof-of-principle experimental demonstration of quantum lithography. Utilizing the entangled nature of a two-photon state, the experimental results have bettered the classical diffraction limit by a factor of two. This is a quantum mechanical two-photon phenomenon but not a violation of the uncertainty principle.Comment: 5 pages, 5 figures Submitted to Physical Review Letter

    Vibrational relaxation of ultracold lithium dimers

    Get PDF
    Journal ArticleLaser cooling and trapping of aloms has enabled some of the most exiting recent advances in atomic physics, including the achievement of Bose-Einstein condensation (BEC). efforts are now underway to trap ultracold molecules in order to study chemical reactions and to investigale BEC experiments, the atoms are cooled to sub-µK temperatures so the energy spread of the atoms which are not in the condensate is amll (≤20kHz) and that of the condensate it self is zero, Therefore, a quanlum degenerate gas enables an unprecedented level of spectroscopic precision

    Testing Bell's inequality using Aharonov-Casher effect

    Full text link
    We propose the Aharonov-Casher (AC) effect for four entangled spin-half particles carrying magnetic moments in the presence of impenetrable line charge. The four particle state undergoes AC phase shift in two causually disconnected region which can show up in the correlations between different spin states of distant particles. This correlation can violate Bell's inequality, thus displaying the non-locality for four particle entangled states in an objective way. Also, we have suggested how to control the AC phase shift locally at two distant locations to test Bell's inequality. We belive that although the single particle AC effect may not be non-local but the entangled state AC effect is a non-local one.Comment: Latex, 6 pages, no figures, submitted to Phys. Rev.

    Observation of light dragging in rubidium vapor cell

    Full text link
    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\bf 86}, 628 (2001)].Comment: 4 pages 4 figures, submitted to PR

    Quantum Particle-Trajectories and Geometric Phase

    Full text link
    "Particle"-trajectories are defined as integrable dxμdpμ=0dx_\mu dp^\mu = 0 paths in projective space. Quantum states evolving on such trajectories, open or closed, do not delocalise in (x,p)(x, p) projection, the phase associated with the trajectories being related to the geometric (Berry) phase and the Classical Mechanics action. High Energy Physics properties of states evolving on "particle"-trajectories are discussed.Comment: 4 page
    corecore