9,399 research outputs found

    Interplay of Fulde-Ferrell-Larkin-Ovchinnikov and Vortex states in two-dimensional Superconductors

    Get PDF
    Clean superconductors with weakly coupled conducting planes have been suggested as promising candidates for observing the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. We consider here a layered superconductor in a magnetic field of arbitrary orientation with respect to the conducting plane. In this case there is competition of spin-pair-breaking and orbital-pair-breaking effects. In previous work, phase boundaries characterized by Landau quantum numbers n > 0 have been predicted. Here, we calculate the actual structure of the stable states below Hc2 by minimizing the free energy. We find several new order parameter structures differing from both the traditional Abrikosov and FFLO solutions. Some interesting unsolved questions appear in the limit of large n.Comment: 13 pages, 3 figure

    The effect of nonmagnetic impurities on the local density of states in s-wave superconductors

    Full text link
    We study the effect of nonmagnetic impurities on the local density of states (LDOS) in s-wave superconductors. The quasiclassical equations of superconductivity are solved selfconsistently to show how LDOS evolves with impurity concentration. The spatially averaged zero-energy LDOS is a linear function of magnetic induction in low fields, N(E=0)=cB/H_{c2}, for all impurity concentration. The constant of proportionality "c" depends weakly on the electron mean free path. We present numerical data for differential conductance and spatial profile of zero-energy LDOS which can help in estimating the mean free path through the LDOS measurement.Comment: 7 pages, 7 figures (high quality color figure available on request

    An Introduction to Slice-Based Cohesion and Coupling Metrics

    Get PDF
    This report provides an overview of slice-based software metrics. It brings together information about the development of the metrics from Weiser’s original idea that program slices may be used in the measurement of program complexity, with alternative slice-based measures proposed by other researchers. In particular, it details two aspects of slice-based metric calculation not covered elsewhere in the literature: output variables and worked examples of the calculations. First, output variables are explained, their use explored and standard reference terms and usage proposed. Calculating slice-based metrics requires a clear understanding of ‘output variables’ because they form the basis for extracting the program slices on which the calculations depend. This report includes a survey of the variation in the definition of output variables used by different research groups and suggests standard terms of reference for these variables. Our study identifies four elements which are combined in the definition of output variables. These are the function return value, modified global variables, modified reference parameters and variables printed or otherwise output by the module. Second, slice-based metric calculations are explained with the aid of worked examples, to assist newcomers to the field. Step-by-step calculations of slice-based cohesion and coupling metrics based on the vertices output by the static analysis tool CodeSurfer (R) are presented and compared with line-based calculations

    The effective sigma-model of multidimensional gravity

    Full text link
    The properties of the effective sigma-model for D-dimensional Einstein gravity based on multidimensional geometries is analyzed. Besides pure geometry, additional minimally coupled scalars and (p+2)-forms are considered which yield an extended target space after reduction to the effective D_0-dimensional geometry. In any case the target space is a homogeneous space. The orthobrane condition guarantees the existence of exact solutions. Geometrically, it makes the target space a locally symmetric one. New solutions with scalar fields are found, which may inflate not only in time-like but in also in additional spatial directions of the effective geometry. Static spherically symmetric solutions with a particular configuration of intersecting electric and magnetic branes are investigated both, for the orthobrane case and for degenerated charges. In both cases T_H depends critically on the intersection dimension of the p-branes. Finally, the role of the Einstein frame for 4-geometries is addressed, and the physical frame transformation for cosmological geometries is given.Comment: 37 pages, text slightly inproved, to appear in: J. Math. Phy
    • 

    corecore