4 research outputs found
Structural properties of mobile armors formed at different flow strengths in gravel-bed rivers
Differences in the structure of mobile armors formed at three different flow strengths have been investigated in a laboratory flume. The temporal evolution of the bed surfaces and the properties of the final beds were compared using metrics of surface grain size, microtopography, and bed organization at both grain and mesoscales. Measurements of the bed condition were obtained on nine occasions during each experiment to describe the temporal evolution of the beds. Structured mobile armors formed quickly in each experiment. At the grain scale (1–45 mm; 9 ≤ Ds50 ≤ 17 mm where Ds50 is the median surface particle size), surface complexity decreased and bed roughness increased in response to surface coarsening and the development of the mobile armor. Particles comprising the armor also became flow aligned and developed imbrication. At a larger scale (100–200 mm), the surface developed a mesoscale topography through the development of bed patches with lower and higher elevations. Metrics of mobile armor structure showed remarkable consistency over prolonged periods of near-constant transport, demonstrating for the first time that actively transporting surfaces maintain an equilibrium bed structure. Bed structuring was least developed in the experiments conducted at the lowest flow strength. However, little difference was observed in the structural metrics of the mobile armors generated at higher flows. Although the range of transport rates studied was limited, the results suggest that the structure of mobile armors is insensitive to the formative transport rate except when rates are low (τ* ≈ 0.03 where τ* is the dimensionless shear stress)
Does the permeability of gravel river beds affect near-bed hydrodynamics?
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near-bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water-worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double-averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three-fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near-bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse-grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
Investigating the effect of channel shape and size and sediment size and sorting on the in-stream removal of wastewater pollutants
A conference contribution for the 1st Water-WISER Early Career Researcher Conference, Transdisciplinary Global Perspectives on Water and Waste Services, held at Loughborough University 21 - 23 June 2022. Â </p
Structural properties of mobile armours formed at different flow strengths in gravel-bed rivers
Differences in the structure of mobile armors formed at three different flow strengths have been investigated in a laboratory flume. The temporal evolution of the bed surfaces and the properties of the final beds were compared using metrics of surface grain size, microtopography, and bed organization at both grain and mesoscales. Measurements of the bed condition were obtained on nine occasions during each experiment to describe the temporal evolution of the beds. Structured mobile armors formed quickly in each experiment. At the grain scale (1–45 mm; 9 ≤ Ds50 ≤ 17 mm where Ds50 is the median surface particle size), surface complexity decreased and bed roughness increased in response to surface coarsening and the development of the mobile armor. Particles comprising the armor also became flow aligned and developed imbrication. At a larger scale (100–200 mm), the surface developed a mesoscale topography through the development of bed patches with lower and higher elevations. Metrics of mobile armor structure showed remarkable consistency over prolonged periods of near-constant transport, demonstrating for the first time that actively transporting surfaces maintain an equilibrium bed structure. Bed structuring was least developed in the experiments conducted at the lowest flow strength. However, little difference was observed in the structural metrics of the mobile armors generated at higher flows. Although the range of transport rates studied was limited, the results suggest that the structure of mobile armors is insensitive to the formative transport rate except when rates are low (τ* ≈ 0.03 where τ* is the dimensionless shear stress)