66 research outputs found
Uniform susceptibility of classical antiferromagnets in one and two dimensions in a magnetic field
We simulated the field-dependent magnetization m(H,T) and the uniform
susceptibility \chi(H,T) of classical Heisenberg antiferromagnets in the chain
and square-lattice geometry using Monte Carlo methods. The results confirm the
singular behavior of \chi(H,T) at small T,H: \lim_{T \to 0}\lim_{H \to 0}
\chi(H,T)=1/(2J_0)(1-1/D) and \lim_{H \to 0}\lim_{T \to 0} \chi(H,T)=1/(2J_0),
where D=3 is the number of spin components, J_0=zJ, and z is the number of
nearest neighbors. A good agreement is achieved in a wide range of temperatures
T and magnetic fields H with the first-order 1/D expansion results [D. A.
Garanin, J. Stat. Phys. 83, 907 (1996)]Comment: 4 PR pages, 4 figures, submitted to PR
Magnetization Switching in Small Ferromagnetic Particles: Nucleation and Coherent Rotation
The mechanisms of thermally activated magnetization switching in small
ferromagnetic particles driven by an external magnetic field are investigated.
For low uniaxial anisotropy the spins rotate coherently while for sufficiently
large uniaxial anisotropy they behave Ising-like, i.e. the switching then is
due to nucleation. The crossover from coherent rotation to nucleation is
studied for the classical three-dimensional Heisenberg model with uniaxial
anisotropy by Monte Carlo simulations. From the temperature dependence of the
metastable lifetime the energy barrier of a switching process can be
determined. For the case of infinite anisotropy we compare numerical results
from simulations of the Ising model with theoretical results for energy
barriers for both, single-droplet and multi-droplet nucleation. The simulated
barriers are in agreement with the theoretical predictions.Comment: 3 pages, Revtex, 4 Figures include
Role of temperature-dependent spin model parameters in ultra-fast magnetization dynamics
In the spirit of multi-scale modelling magnetization dynamics at elevated
temperature is often simulated in terms of a spin model where the model
parameters are derived from first principles. While these parameters are mostly
assumed temperature-independent and thermal properties arise from spin
fluctuations only, other scenarios are also possible. Choosing bcc Fe as an
example, we investigate the influence of different kinds of model assumptions
on ultra-fast spin dynamics, where following a femtosecond laser pulse a sample
is demagnetized due to a sudden rise of the electron temperature. While
different model assumptions do not affect the simulational results
qualitatively, their details do depend on the nature of the modelling.Comment: 8 pages, 6 figure
Orientation and temperature dependence of domain wall properties in FePt
An investigation of the orientation and temperature dependence of domain wall properties in FePt is presented. The authors use a microscopic, atomic model for the magnetic interactions within an effective, classical spin Hamiltonian constructed on the basis of spin-density functional calculations. They find a significant dependence of the domain wall width as well as the domain wall energy on the orientation of the wall with respect to the crystal lattice. Investigating the temperature dependence, they demonstrate the existence of elliptical domain walls in FePt at room temperature. The consequences of their findings for a micromagnetic continuum theory are discussed. (c) 2007 American Institute of Physics
Magnetization Switching in Nanowires: Monte Carlo Study with Fast Fourier Transformation for Dipolar Fields
For the investigations of thermally activated magnetization reversal in
systems of classical magnetic moments numerical methods are desirable. We
present numerical studies which base on time quantified Monte Carlo methods
where the long-range dipole-dipole interaction is calculated with the aid of
fast Fourier transformation. As an example, we study models for ferromagnetic
nanowires comparing our numerical results for the characteristic time of the
reversal process also with numerical data from Langevin dynamics simulations
where the fast Fourier transformation method is well established. Depending on
the system geometry different reversal mechanism occur like coherent rotation,
nucleation, and curling.Comment: 7 pages, 5 figures, submitted to J. Magn. Magn. Ma
Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys
A hierarchical multiscale approach to model the magnetization dynamics of
ferromagnetic ran- dom alloys is presented. First-principles calculations of
the Heisenberg exchange integrals are linked to atomistic spin models based
upon the stochastic Landau-Lifshitz-Gilbert (LLG) equation to calculate
temperature-dependent parameters (e.g., effective exchange interactions,
damping param- eters). These parameters are subsequently used in the
Landau-Lifshitz-Bloch (LLB) model for multi-sublattice magnets to calculate
numerically and analytically the ultrafast demagnetization times. The developed
multiscale method is applied here to FeNi (permalloy) as well as to copper-
doped FeNi alloys. We find that after an ultrafast heat pulse the Ni sublattice
demagnetizes faster than the Fe sublattice for the here-studied FeNi-based
alloys
Multiscale modeling of magnetic materials: Temperature dependence of the exchange stiffness
For finite-temperature micromagnetic simulations the knowledge of the temperature dependence of the exchange stiffness plays a central role. We use two approaches for the calculation of the thermodynamic exchange parameter from spin models: (i) based on the domain-wall energy and (ii) based on the spin-wave dispersion. The corresponding analytical and numerical approaches are introduced and compared. A general theory for the temperature dependence and scaling of the exchange stiffness is developed using the classical spectral density method. The low-temperature exchange stiffness A is found to scale with magnetization as m(1.66) for systems on a simple cubic lattice and as m(1.76) for an FePt Hamiltonian parametrized through ab initio calculations. The additional reduction in the scaling exponent, as compared to the mean-field theory (A similar to m(2)), comes from the nonlinear spin-wave effects
Static and dynamic properties of Single-Chain Magnets with sharp and broad domain walls
We discuss time-quantified Monte-Carlo simulations on classical spin chains
with uniaxial anisotropy in relation to static calculations. Depending on the
thickness of domain walls, controlled by the relative strength of the exchange
and magnetic anisotropy energy, we found two distinct regimes in which both the
static and dynamic behavior are different. For broad domain walls, the
interplay between localized excitations and spin waves turns out to be crucial
at finite temperature. As a consequence, a different protocol should be
followed in the experimental characterization of slow-relaxing spin chains with
broad domain walls with respect to the usual Ising limit.Comment: 18 pages, 13 figures, to be published in Phys. Rev.
Current-induced domain wall motion including thermal effects based on Landau-Lifshitz-Bloch equation
We employ the Landau-Lifshitz-Bloch (LLB) equation to investigate
current-induced domain wall motion at finite temperatures by numerical
micromagnetic simulations. We extend the LLB equation with spin torque terms
that account for the effect of spin-polarized currents and we find that the
velocities depend strongly on the interplay between adiabatic and non-adiabatic
spin torque terms. As a function of temperature, we find non-monotonous
behavior, which might be useful to determine the relative strengths of the spin
torque terms experimentally.Comment: 20 page, 8 figure
- …