1,090 research outputs found
Using a neural network approach for muon reconstruction and triggering
The extremely high rate of events that will be produced in the future Large
Hadron Collider requires the triggering mechanism to take precise decisions in
a few nano-seconds. We present a study which used an artificial neural network
triggering algorithm and compared it to the performance of a dedicated
electronic muon triggering system. Relatively simple architecture was used to
solve a complicated inverse problem. A comparison with a realistic example of
the ATLAS first level trigger simulation was in favour of the neural network. A
similar architecture trained after the simulation of the electronics first
trigger stage showed a further background rejection.Comment: A talk given at ACAT03, KEK, Japan, November 2003. Submitted to
Nuclear Instruments and Methods in Physics Research, Section
Twenty Years of Timing SS433
We present observations of the optical ``moving lines'' in spectra of the
Galactic relativistic jet source SS433 spread over a twenty year baseline from
1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession
of the jet axis in SS433, and we present a new determination of the precession
parameters based on these data. We investigate the amplitude and nature of
time- and phase-dependent deviations from the kinematic model for the jet
precession, including an upper limit on any precessional period derivative of
. We also dicuss the implications of these results
for the origins of the relativistic jets in SS433.Comment: 21 pages, including 9 figures. To appear in the Astrophysical Journa
A review of High Performance Computing foundations for scientists
The increase of existing computational capabilities has made simulation
emerge as a third discipline of Science, lying midway between experimental and
purely theoretical branches [1, 2]. Simulation enables the evaluation of
quantities which otherwise would not be accessible, helps to improve
experiments and provides new insights on systems which are analysed [3-6].
Knowing the fundamentals of computation can be very useful for scientists, for
it can help them to improve the performance of their theoretical models and
simulations. This review includes some technical essentials that can be useful
to this end, and it is devised as a complement for researchers whose education
is focused on scientific issues and not on technological respects. In this
document we attempt to discuss the fundamentals of High Performance Computing
(HPC) [7] in a way which is easy to understand without much previous
background. We sketch the way standard computers and supercomputers work, as
well as discuss distributed computing and discuss essential aspects to take
into account when running scientific calculations in computers.Comment: 33 page
NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules
Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/
Bosonization for Wigner-Jordan-like Transformation : Backscattering and Umklapp-processes on Fictitious Lattice
We analyze the asymptotic behavior of the exponential form in the fermionic
density operators as the function of ruling parameter Q. In the particular case
Q=\pi this exponential associates with the Wigner-Jordan transformation for XY
spin chain model. We compare the bosonization approach and the evaluation via
the Toeplitz determinant. The use of Szego-Kac theorem suggests that at Q>\pi/3
the divergent series for intrinsic logarithm provides a bosonized solution and
faster decaying one, found as the logarithm's value on another sheet of the
complex plane. The second solution is revealed as umklapp-process on the
fictitious lattice while originates from backscattering terms in bosonized
density. Our finding preserves in a wide range of fermion filling ratios.Comment: 8 pages, REVTEX, 3 eps figures, accepted to Phys.Rev.
From the Chern-Simons theory for the fractional quantum Hall effect to the Luttinger model of its edges
The chiral Luttinger model for the edges of the fractional quantum Hall
effect is obtained as the low energy limit of the Chern-Simons theory for the
two dimensional system. In particular we recover the Kac-Moody algebra for the
creation and annihilation operators of the edge density waves and the
bosonization formula for the electronic operator at the edge.Comment: 4 pages, LaTeX, 1 Postscript figure include
Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force
We discuss the ergodic properties of quasi-Markovian stochastic differential
equations, providing general conditions that ensure existence and uniqueness of
a smooth invariant distribution and exponential convergence of the evolution
operator in suitably weighted spaces, which implies the validity
of central limit theorem for the respective solution processes. The main new
result is an ergodicity condition for the generalized Langevin equation with
configuration-dependent noise and (non-)conservative force
The Self-Administered Witness Interview Tool (SAW-IT): Enhancing witness recall of workplace incidents
Given the often crucial role of witness evidence in Occupational Health and Safety investigation, statements should be obtained as soon as possible after an incident using best practice methods. The present research systematically tested the efficacy of a novel Self-Administered Witness Interview Tool (SAW-IT); an adapted version of the Self-Administered Interview (SAI©) designed to elicit comprehensive information from witnesses to industrial events. The present study also examined whether completing the SAW-IT mitigated the effect of schematic processing on witness recall. Results indicate that the SAW-IT elicited significantly more correct details, as well as more precise information than a traditional incident report form. Neither the traditional report from, nor the SAW-IT mitigated against biasing effects of contextual information about a workerâs safety history, confirming that witnesses should be shielded from extraneous post-event information prior to reporting. Importantly, these results demonstrate that the SAW-IT can enhance the quality of witness reports
Large scale stochastic inventory routing problems with split delivery and service level constraints
A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customerâs delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC
Interacting Electrons on a Fluctuating String
We consider the problem of interacting electrons constrained to move on a
fluctuating one-dimensional string. An effective low-energy theory for the
electrons is derived by integrating out the string degrees of freedom to lowest
order in the inverse of the string tension and mass density, which are assumed
to be large. We obtain expressions for the tunneling density of states, the
spectral function and the optical conductivity of the system. Possible
connections with the phenomenology of the cuprate high temperature
superconductors are discussed.Comment: 14 pages, 1 figur
- âŠ