2,079 research outputs found
Design and construction of new central and forward muon counters for CDF II
New scintillation counters have been designed and constructed for the CDF
upgrade in order to complete the muon coverage of the central CDF detector, and
to extend this coverage to larger pseudorapidity. A novel light collection
technique using wavelength shifting fibers, together with high quality
polystyrene-based scintillator resulted in compact counters with good and
stable light collection efficiency over lengths extending up to 320 cm. Their
design and construction is described and results of their initial performance
are reported.Comment: 20 pages, 15 figure
Development and property study of the extremely thin 12 \texorpdfstring{} C-type straw tubes with 5-mm diameter for a Straw Tracker System of COMET
The COMET experiment focuses on searching for the direct conversion of a muon
into an electron with aluminum nuclei without emitting a neutrino (so-called
conversion). This conversion violates charged lepton flavor
conservation law, a fundamental principle in the Standard Model. The COMET
experiment requirement is to achieve the muon-to-electron conversation
sensitivity on a level of . The Straw Tracker System (STS) based on
straw tubes could provide the necessary spatial resolution of 150 m and
the electron momentum resolution better than 200 keV/c.
The COMET experiment will be separated into two phases. Phase-I will operate
with the 3.2 kW 8-GeV-proton beam, and Phase-II will operate with beam
intensity increased to 56 kW. STS must operate in a vacuum with 1 bar internal
pressure applied to straws. The initial design of 10-mm-diameter straws
developed for phase-I will not be as efficient with the 20 times increased beam
intensity of Phase II, but the new STS design based on 5-mm-diameter 12-m
thick straws could fully satisfy the required efficiency. The mechanical
properties of these straws, such as sagging, elongation, dependence of the
diameter on over-pressure, etc, are discussed in this article
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set
We present a search for the standard model Higgs boson produced in
association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data
collected with the CDF II detector at the Tevatron corresponding to an
integrated luminosity of 9.45 fb-1. In events consistent with the decay of the
Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a
neutrino, we set 95% credibility level upper limits on the WH production cross
section times the H->bb branching ratio as a function of Higgs boson mass. At a
Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times
the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by
PRL
- …