357 research outputs found
Power density of a bare electrodynamic tether generator
The maximum performance of bare electrodynamic tethers as power generating systems under OML-theory is analyzed. Results show that best performance in terms of power density is achieved by designing the tether in such a way to increase ohmic impedance with respect to plasma contact impedance, hence favoring longer and thinner tethers. In such condition the corresponding optimal value of the load impedance is seen to approach the ohmic impedance of the conducting tether. At the other extreme, when plasma contact impedance dominates (which is not optimal but can be relevant for some applications) optimum power generation is found by matching the load impedance with an effective tether-plasma contact impedance whose expression is derived
Second order brane cosmology with radion stabilization
We study cosmology in the five-dimensional Randall-Sundrum brane-world with a
stabilizing effective potential for the radion and matter localized on the
branes. The analysis is performed by employing a perturbative expansion in the
ratio rho/V between the matter energy density on the branes and the brane
tensions around the static Randall-Sundrum solution (which has rho=0 and brane
tensions +-V). This approach ensures that the matter evolves adiabatically and
allows us to find approximate solutions to second order in \rho/V. Some
particular cases are then analyzed in details.Comment: 17 pages, RevTeX4, 4 figures, final version to appear in Phys. Rev.
The low-energy limit of AdS(3)/CFT2 and its TBA
We investigate low-energy string excitations in AdS3 × S3 × T4. When the worldsheet is decompactified, the theory has gapless modes whose spectrum at low energies is determined by massless relativistic integrable S matrices of the type introduced by Al. B. Zamolodchikov. The S matrices are non-trivial only for excitations with identical worldsheet chirality, indicating that the low-energy theory is a CFT2. We construct a Thermodynamic Bethe Ansatz (TBA) for these excitations and show how the massless modes’ wrapping effects may be incorporated into the AdS3 spectral problem. Using the TBA and its associated Y-system, we determine the central charge of the low-energy CFT2 to be c = 6 from calculating the vacuum energy for antiperiodic fermions — with the vacuum energy being zero for periodic fermions in agreement with a supersymmetric theory — and find the energies of some excited states
Three-Body Dynamics and Self-Powering of an Electrodynamic Tether in a Plasmasphere
The dynamics of an electrodynamic tether in a three-body gravitational environment are investigated. In the classical two-body scenario the extraction of power is at the expense of orbital kinetic energy. As a result of power extraction, an electrodynamic tether satellite system loses altitude and deorbits. This concept has been proposed and well investigated in the past, for example for orbital debris mitigation and spent stages reentry. On the other hand, in the three-body scenario an electrodynamic tether can be placed in an equilibrium position fixed with respect to the two primary bodies without deorbiting, and at the same time generate power for onboard use. The appearance of new equilibrium positions in the perturbed three-body problem allow this to happen as the electrical power is extracted at the expenses of the plasma corotating with the primary body. Fundamental differences between the classical twobody dynamics and the new phenomena appearing in the circular restricted three-body problem perturbed by the electrodynamic force of the electrodynamic tether are shown in the paper. An interesting application of an electrodynamic tether placed in the Jupiter plasma torus is then considered, in which the electrodynamic tether generates useful electrical power of about 1 kW with a 20-km-long electrodynamic tether from the environmental plasma without losing orbital energy
Numerical results for the exact spectrum of planar AdS4/CFT3
We compute the anomalous dimension for a short single-trace operator in
planar ABJM theory at intermediate coupling. This is done by solving
numerically the set of Thermodynamic Bethe Ansatz equations which are expected
to describe the exact spectrum of the theory. We implement a truncation method
which significantly reduces the number of integral equations to be solved and
improves numerical efficiency. Results are obtained for a range of 't Hooft
coupling lambda corresponding to , where h(lambda) is
the interpolating function of the AdS4/CFT3 Bethe equations.Comment: v3: corrected Acknowledgements section; v4: minor changes, published
version; v5: fixed typos in Eq. (3.9
Accurate analytical approximation of asteroid deflection with constant tangential thrust
We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection mission
Exploration of the Galilean Moons using Electrodynamic Tethers for Propellantless Maneuvers and Self-Powering
Scattering of Giant Holes
We study scalar excitations of high spin operators in N=4 super Yang-Mills
theory, which are dual to solitons propagating on a long folded string in AdS_3
x S^1. In the spin chain description of the gauge theory, these are associated
to holes in the magnon distribution in the sl(2,R) sector. We compute the
all-loop hole S-matrix from the asymptotic Bethe ansatz, and expand in leading
orders at weak and strong coupling. The worldsheet S-matrix of solitonic
excitations on the GKP string is calculated using semiclassical quantization.
We find an exact agreement between the gauge theory and string theory results.Comment: 13 pages. v2: minor corrections, references adde
Orbifolded Konishi from the Mirror TBA
Starting with a discussion of the general applicability of the simplified
mirror TBA equations to simple deformations of the AdS_5 x S^5 superstring, we
proceed to study a specific type of orbifold to which the undeformed simplified
TBA equations directly apply. We then use this set of equations, as well as
Luscher's approach, to determine the NLO wrapping correction to the energy of
what we call the orbifolded Konishi state, and show that they perfectly agree.
In addition we discuss wrapping corrections to the ground state energy of the
orbifolded model under consideration.Comment: 26 pages, 5 figures, v2: corrected typos, added a short discussion on
the ground state of the model; as submitted to J. Phys.
Dynamic stabilization of L2 periodic orbits using attitude-orbit coupling effects
Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite?s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical dimension is dynamically equivalent to the perturbation produced by an oblate central body on a masspoint satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points
- …