2,274 research outputs found

    Interpretation of High Energy String Scattering in terms of String Configurations

    Full text link
    High energy string scattering at fixed momentum transfer, known to be dominated by Regge trajectory exchange, is interpreted by identifying families of string states which induce each type of trajectory exchange. These include the usual leading trajectory α(t)=αt+1\alpha(t)=\alpha^\prime t+1 and its daughters as well as the ``sister'' trajectories αm(t)=α(t)/m(m1)/2\alpha_m(t)=\alpha(t)/m-(m-1)/2 and their daughters. The contribution of the sister αm\alpha_m to high energy scattering is dominated by string excitations in the mthm^{th} mode. Thus, at large t-t, string scattering is dominated by wee partons, consistently with a picture of string as an infinitely composite system of ``constituents'' which carry zero energy and momentum.Comment: 14 pages, phyzzx, psfig required, Florida Preprint UFIFT-94-

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    Electromagnetic fields of a massless particle and the eikonal

    Full text link
    Electromagnetic fields of a massless charged particle are described by a gauge potential that is almost everywhere pure gauge. Solution of quantum mechanical wave equations in the presence of such fields is therefore immediate and leads to a new derivation of the quantum electrodynamical eikonal approximation. The elctromagnetic action in the eikonal limit is localised on a contour in a two-dimensional Minkowski subspace of four-dimensional space-time. The exact S-matrix of this reduced theory coincides with the eikonal approximation, and represents the generalisatin to electrodynamics of the approach of 't Hooft and the Verlinde's to Planckian scattering.Comment: The missing overdot -- signifying the τ\tau differentiation 2Ω˙+andk˙+\nabla^2 {\dot \Omega}^{+ -} and {\dot k}^{+-} in eqs. (23) and (24) -- is inserted. Also, obsolete macro has been fixed. Plain TeX, 13 page

    Supersymmetry, the Cosmological Constant and a Theory of Quantum Gravity in Our Universe

    Full text link
    There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterize different theories. If it is positive, supersymmetry must be broken. A heuristic calculation shows that a cosmological constant of the observed size predicts superpartners in the TeV range. This mechanism for SUSY breaking also puts important constraints on low energy particle physics models. This essay was submitted to the Gravity Research Foundation Competition and is based on a longer article, which will be submitted in the near future

    Classicalization of Gravitons and Goldstones

    Get PDF
    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role of entropy in it, as it illustrates, that much more prosaic scalar theories essentially do the same. Finally, it illustrates that in both cases classicalization is the defining property for unitarization, and that it sets-in before one can talk about accompanying properties, such as entropy and thermality of static classicalons (black holes). These properties are by-products of classicalization, and their equivalents can be defined for non-gravitational cases of classicalization.Comment: 23 page

    UV-Completion by Classicalization

    Full text link
    We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UV-completion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal WW-bosons self-unitarize via classicalization, without the help of any new weakly-coupled physics. Alternatively, in the presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy. In both scenarios the high-energy scatterings are dominated by the formation of classicalons, which subsequently decay into many particle states. The experimental signatures at the LHC are quite distinctive, with sharp differences in the two cases.Comment: 37 page

    Fundamental Strings as Black Bodies

    Get PDF
    We show that the decay spectrum of massive excitations in perturbative string theories is thermal when averaged over the (many) initial degenerate states. We first compute the inclusive photon spectrum for open strings at the tree level showing that a black body spectrum with the Hagedorn temperature emerges in the averaging. A similar calculation for a massive closed string state with winding and Kaluza-Klein charges shows that the emitted graviton spectrum is thermal with a "grey-body" factor, which approaches one near extremality. These results uncover a simple physical meaning of the Hagedorn temperature and provide an explicit microscopic derivation of the black body spectrum from a unitary SS matrix.Comment: some changes in the Discussion section and in the reference list. 11 pages, Late

    Effects of the Generalized Uncertainty Principle on the Inflation Parameters

    Full text link
    We investigate the effects of the generalized uncertainty principle on the inflationary dynamics of the early universe in both standard and braneworld viewpoint. We choose the Randall-Sundrum II model as our underlying braneworld scenario. We find that the quantum gravitational effects lead to a spectral index which is not scale invariant. Also, the amplitude of density fluctuations is reduced by increasing the strength of quantum gravitational corrections. However, the tensor-to-scalar ratio increases by incorporation of these quantum gravity effects. We outline possible manifestations of these quantum gravity effects in the recent and future observations.Comment: 11 pages, revised version with new references, Accepted for publication in IJMP

    Effective Action for High-Energy Scattering in Gravity

    Full text link
    The multi-Regge effective action is derived directly from the linearized gravity action. After excluding the redundant field components we separate the fields into momentum modes and integrate over modes which correspond neither to the kinematics of scattering nor to the one of exchanged particles. The effective vertices of scattering and of particle production are obtained as sums of the contributions from the triple and quartic interaction terms and the fields in the effective action are defined in terms of the two physical components of the metric fluctuation.Comment: 15 pages, LATE

    Exact Gravitational Shockwaves and Planckian Scattering on Branes

    Get PDF
    We obtain a solution describing a gravitational shockwave propagating along a Randall-Sundrum brane. The interest of such a solution is twofold: on the one hand, it is the first exact solution for a localized source on a Randall-Sundrum three-brane. On the other hand, one can use it to study forward scattering at Planckian energies, including the effects of the continuum of Kaluza-Klein modes. We map out the different regimes for the scattering obtained by varying the center-of-mass energy and the impact parameter. We also discuss exact shockwaves in ADD scenarios with compact extra dimensions.Comment: 19 pages, 3 figures. v2: references added, minor improvements and small errors correcte
    corecore