2 research outputs found

    Extended water wave systems of Boussinesq equations on a finite interval: Theory and numerical analysis

    No full text
    Considered here is a class of Boussinesq systems of Nwogu type. Such systems describe propagation of nonlinear and dispersive water waves of significant interest such as solitary and tsunami waves. The initial-boundary value problem on a finite interval for this family of systems is studied both theoretically and numerically. First, the linearization of a certain generalized Nwogu system is solved analytically via the unified transform of Fokas. The corresponding analysis reveals two types of admissible boundary conditions, thereby suggesting appropriate boundary conditions for the nonlinear Nwogu system on a finite interval. Then, well-posedness is established, both in the weak and in the classical sense, for a regularized Nwogu system in the context of an initial-boundary value problem that describes the dynamics of water waves in a basin with wall-boundary conditions. In addition, a new modified Galerkin method is suggested for the numerical discretization of this regularized system in time, and its convergence is proved along with optimal error estimates. Finally, numerical experiments illustrating the effect of the boundary conditions on the reflection of solitary waves by a vertical wall are also provided

    On the lifespan of nonzero background solutions to a class of focusing nonlinear Schrödinger equations

    No full text
    The global solvability in time and the potential for blow-up of solutions to non-integrable focusing nonlinear Schrödinger equations with nonzero boundary conditions at infinity present challenges that are less explored and understood compared to the case of zero boundary conditions. In this work, we address these questions by establishing estimates on the lifespan of solutions to non-integrable equations involving a general class of nonlinearities. These estimates depend on the size of the initial data, the growth of the nonlinearity, and relevant quantities associated with the amplitude of the background. The estimates provide quantified upper bounds for the minimum guaranteed lifespan of solutions. Qualitatively, for small initial data and background, these upper bounds suggest long survival times consistent with global existence of solutions. On the other hand, for larger initial data and background, the estimates indicate the potential for the intriguing phenomenon of instantaneous collapse in finite time. These qualitative theoretical results are illustrated via numerical simulations. Furthermore, importantly, the numerical findings motivate the proof of improved theoretical upper bounds that provide excellent quantitative agreement with the order of the numerically identified lifespan of solutions
    corecore