1,647 research outputs found
Climates of Warm Earth-like Planets I: 3-D Model Simulations
We present a large ensemble of simulations of an Earth-like world with
increasing insolation and rotation rate. Unlike previous work utilizing
idealized aquaplanet configurations we focus our simulations on modern
Earth-like topography. The orbital period is the same as modern Earth, but with
zero obliquity and eccentricity. The atmosphere is 1 bar N-dominated with
CO=400 ppmv and CH=1 ppmv. The simulations include two types of
oceans; one without ocean heat transport (OHT) between grid cells as has been
commonly used in the exoplanet literature, while the other is a fully coupled
dynamic bathtub type ocean. The dynamical regime transitions that occur as day
length increases induce climate feedbacks producing cooler temperatures, first
via the reduction of water vapor with increasing rotation period despite
decreasing shortwave cooling by clouds, and then via decreasing water vapor and
increasing shortwave cloud cooling, except at the highest insolations.
Simulations without OHT are more sensitive to insolation changes for fast
rotations while slower rotations are relatively insensitive to ocean choice.
OHT runs with faster rotations tend to be similar with gyres transporting heat
poleward making them warmer than those without OHT. For slower rotations OHT is
directed equator-ward and no high latitude gyres are apparent. Uncertainties in
cloud parameterization preclude a precise determination of habitability but do
not affect robust aspects of exoplanet climate sensitivity. This is the first
paper in a series that will investigate aspects of habitability in the
simulations presented herein. The datasets from this study are opensource and
publicly available.Comment: 27 pages ApJS accepted. Expanded Introduction and several additional
figure
Capture-zone scaling in island nucleation: phenomenological theory of an example of universal fluctuation behavior
In studies of island nucleation and growth, the distribution of capture
zones, essentially proximity cells, can give more insight than island-size
distributions. In contrast to the complicated expressions, ad hoc or derived
from rate equations, usually used, we find the capture-zone distribution can be
described by a simple expression generalizing the Wigner surmise from random
matrix theory that accounts for the distribution of spacings in a host of
fluctuation phenomena. Furthermore, its single adjustable parameter can be
simply related to the critical nucleus of growth models and the substrate
dimensionality. We compare with extensive published kinetic Monte Carlo data
and limited experimental data. A phenomenological theory sheds light on the
result.Comment: 5 pages, 4 figures, originally submitted to Phys. Rev. Lett. on Dec.
15, 2006; revised version v2 tightens and focuses the presentation,
emphasizes the importance of universal features of fluctuations, corrects an
error for d=1, replaces 2 of the figure
Habitable Climate Scenarios for Proxima Centauri b With a Dynamic Ocean
The nearby exoplanet Proxima Centauri b will be a prime future target for
characterization, despite questions about its retention of water. Climate
models with static oceans suggest that an Earth-like Proxima b could harbor a
small dayside region of surface liquid water at fairly warm temperatures
despite its weak instellation. We present the first 3-dimensional climate
simulations of Proxima b with a dynamic ocean. We find that an ocean-covered
Proxima b could have a much broader area of surface liquid water but at much
colder temperatures than previously suggested, due to ocean heat transport and
depression of the freezing point by salinity. Elevated greenhouse gas
concentrations do not necessarily produce more open ocean area because of
possible dynamic regime transitions. For an evolutionary path leading to a
highly saline present ocean, Proxima b could conceivably be an inhabited,
mostly open ocean planet dominated by halophilic life. For an ocean planet in
3:2 spin-orbit resonance, a permanent tropical waterbelt exists for moderate
eccentricity. Simulations of Proxima Centauri b may also be a model for the
habitability of planets receiving similar instellation from slightly cooler or
warmer stars, e.g., in the TRAPPIST-1, LHS 1140, GJ 273, and GJ 3293 systems.Comment: Submitted to Astrobiology; 38 pages, 12 figures, 5 table
Subpicosecond time-resolved Raman studies of LO phonons in GaN: Dependence on photoexcited carrier density
Subpicosecond time-resolved Raman spectroscopy has been used to measure the lifetime of the LO phonon mode in GaN for photoexcited electron-hole pair density ranging from1016to2×1019cm−3 . The lifetime has been found to decrease from 2.5ps , at low density, to0.35ps , at the highest density. The experimental findings should help resolve the recent controversy over the lifetime of LO phonon mode in GaN
Subpicosecond time-resolved Raman studies of field-induced transient transport in an InxGa1−xAs-based p-i-n semiconductor nanostructure
Electron transient transport in an InxGa1−xAs-based (x=0.53) p-i-nnanostructure under the application of an electric field has been studied by time-resolvedRaman spectroscopy on a subpicosecond time scale and at T=300K. The experimental results reveal the time evolution of the electron distribution function and electron drift velocity with subpicosecond time resolution. These experimental results are compared with those of both InP-based and GaAs-based p-i-nnanostructures and provide a consistent understanding and better insight of electron transient transport phenomena in semiconductors
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments
with Dynamics (ROCKE-3D) is a 3-Dimensional General Circulation Model (GCM)
developed at the NASA Goddard Institute for Space Studies for the modeling of
atmospheres of Solar System and exoplanetary terrestrial planets. Its parent
model, known as ModelE2 (Schmidt et al. 2014), is used to simulate modern and
21st Century Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing
effort to expand the capabilities of ModelE2 to handle a broader range of
atmospheric conditions including higher and lower atmospheric pressures, more
diverse chemistries and compositions, larger and smaller planet radii and
gravity, different rotation rates (slowly rotating to more rapidly rotating
than modern Earth, including synchronous rotation), diverse ocean and land
distributions and topographies, and potential basic biosphere functions. The
first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds
within the Solar System such as paleo-Earth, modern and paleo-Mars,
paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range
of temperatures, pressures, and atmospheric constituents we can then expand its
capabilities further to those exoplanetary rocky worlds that have been
discovered in the past and those to be discovered in the future. We discuss the
current and near-future capabilities of ROCKE-3D as a community model for
studying planetary and exoplanetary atmospheres.Comment: Revisions since previous draft. Now submitted to Astrophysical
Journal Supplement Serie
Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization
The space subdivision in cells resulting from a process of random nucleation
and growth is a subject of interest in many scientific fields. In this paper,
we deduce the expected value and variance of these distributions while assuming
that the space subdivision process is in accordance with the premises of the
Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the
time dependency of nucleation and growth rates. We have also developed an
approximate analytical cell size probability density function. Finally, we have
applied our approach to the distributions resulting from solid phase
crystallization under isochronal heating conditions
- …