15 research outputs found

    Probing Colored Particles with Photons, Leptons, and Jets

    Full text link
    If pairs of new colored particles are produced at the Large Hadron Collider, determining their quantum numbers, and even discovering them, can be non-trivial. We suggest that valuable information can be obtained by measuring the resonant signals of their near-threshold QCD bound states. If the particles are charged, the resulting signatures include photons and leptons and are sufficiently rich for unambiguously determining their various quantum numbers, including the charge, color representation and spin, and obtaining a precise mass measurement. These signals provide well-motivated benchmark models for resonance searches in the dijet, photon+jet, diphoton and dilepton channels. While these measurements require that the lifetime of the new particles be not too short, the resulting limits, unlike those from direct searches for pair production above threshold, do not depend on the particles' decay modes. These limits may be competitive with more direct searches if the particles decay in an obscure way.Comment: 39 pages, 9 figures; v2: more recent searches include

    LHC Coverage of RPV MSSM with Light Stops

    Full text link
    We examine the sensitivity of recent LHC searches to signatures of supersymmetry with R-parity violation (RPV). Motivated by naturalness of the Higgs potential, which would favor light third-generation squarks, and the stringent LHC bounds on spectra in which the gluino or first and second generation squarks are light, we focus on scenarios dominated by the pair production of light stops. We consider the various possible direct and cascade decays of the stop that involve the trilinear RPV operators. We find that in many cases, the existing searches exclude stops in the natural mass range and beyond. However, typically there is little or no sensitivity to cases dominated by UDD operators or LQD operators involving taus. We propose several ideas for searches which could address the existing gaps in experimental coverage of these signals.Comment: 41 pages, 12 figures; v2: included new searches (see footnote 10), minor corrections and improvement

    Interpreting a 750 GeV diphoton resonance

    Get PDF
    We discuss the implications of the significant excesses in the diphoton final state observed by the LHC experiments ATLAS and CMS around a diphoton invariant mass of 750 GeV. The interpretation of the excess as a spin-zero s-channel resonance implies model-independent lower bounds on both its branching ratio and its coupling to photons, which stringently constrain dynamical models. We consider both the case where the excess is described by a narrow and a broad resonance. We also obtain model-independent constraints on the allowed couplings and branching fractions to final states other than diphotons, by including the interplay with 8 TeV searches. These results can guide attempts to construct viable dynamical models of the resonance. Turning to specific models, our findings suggest that the anomaly cannot be accounted for by the presence of only an additional singlet or doublet spin-zero field and the Standard Model degrees of freedom; this includes all two-Higgs-doublet models. Likewise, heavy scalars in the MSSM cannot explain the excess if stability of the electroweak vacuum is required, at least in a leading-order analysis. If we assume that the resonance is broad we find that it is challenging to find a weakly coupled explanation. However, we provide an existence proof in the form of a model with vectorlike quarks with large electric charge that is perturbative up to the 100 TeV scale. For the narrow-resonance case a similar model can be perturbative up to high scales also with smaller charges. We also find that, in their simplest form, dilaton models cannot explain the size of the excess. Some implications for flavor physics are briefly discussed

    Gluino-Squark Production at the LHC: The Threshold

    Full text link
    An analysis of the cross section for hadronic production of gluino-squark pairs close to threshold is presented. Within the framework of non-relativistic QCD a significant enhancement compared to fixed order perturbation theory is observed which originates from the characteristic remnants of the gluino-squark resonances below the nominal pair threshold. The analysis includes all colour configurations of S-wave gluino-squark pairs, i.e. triplet, sextet and 15 representation. Matching coefficients at leading order are separately evaluated for all colour configurations. The dominant QCD corrections, arising from initial- and final-state radiation are included. The non-relativistic dynamics of the gluino pair is solved by calculating the Green's function in Next-to-Leading Order (NLO). The results are applied to benchmark scenarios, based on Snowmass Points and Slopes (SPS). As a consequence of the large decay rate of at least one of the constituents squark or gluino annihilation decays of the bound state (\tilde{g}\tilde{q})\rightarrow gq, q\gamma, qZ or q'W^{\pm} are irrelevant. Thus the signatures of gluino-quark production below and above the nominal threshold are identical. Numerical results for the cross section at the Large Hadron Collider (LHC) at \sqrt{s}=7 TeV and 14 TeV are presented. The enhancement of the total cross section through final state interaction amounts to roughly 3%.Comment: 25 pages, 9 figures, Eq. 10 modified. Reference [30] added. Discussion of the expected quality of the approximation added before eq. 23. Some changes in notation. Typos correcte