9,746 research outputs found

    Spatial mapping of hepatitis C prevalence in recent injecting drug users in contact with services.

    Get PDF
    In developed countries the majority of hepatitis C virus (HCV) infections occur in injecting drug users (IDUs) with prevalence in IDUs often high, but with wide geographical differences within countries. Estimates of local prevalence are needed for planning services for IDUs, but it is not practical to conduct HCV seroprevalence surveys in all areas. In this study survey data from IDUs attending specialist services were collected in 52/149 sites in England between 2006 and 2008. Spatially correlated random-effects models were used to estimate HCV prevalence for all sites, using auxiliary data to aid prediction. Estimates ranged from 14% to 82%, with larger cities, London and the North West having the highest HCV prevalence. The methods used generated robust estimates for each area, with a well-identified spatial pattern that improved predictions. Such models may be of use in other areas of study where surveillance data are sparse

    Oculomotor examination of the weapon focus effect: does a gun automatically engage visual attention?

    Get PDF
    A person is less likely to be accurately remembered if they appear in a visual scene with a gun, a result that has been termed the weapon focus effect (WFE). Explanations of the WFE argue that weapons engage attention because they are unusual and/or threatening, which causes encoding deficits for the other items in the visual scene. Previous WFE research has always embedded the weapon and nonweapon objects within a larger context that provides information about an actor's intention to use the object. As such, it is currently unknown whether a gun automatically engages attention to a greater extent than other objects independent of the context in which it is presente

    Fast gates for ion traps by splitting laser pulses

    Get PDF
    We present a fast phase gate scheme that is experimentally achievable and has an operation time more than two orders of magnitude faster than current experimental schemes for low numbers of pulses. The gate time improves with the number of pulses following an inverse power law. Unlike implemented schemes which excite precise motional sidebands, thus limiting the gate timescale, our scheme excites multiple motional states using discrete ultra-fast pulses. We use beam-splitters to divide pulses into smaller components to overcome limitations due to the finite laser pulse repetition rate. This provides gate times faster than proposed theoretical schemes when we optimise a practical setup.Comment: 20 pages, 8 figure

    Long-range coupling of silicon photonic waveguides using lateral leakage and adiabatic passage

    Full text link
    We present a new approach to long range coupling based on a combination of adiabatic passage and lateral leakage in thin shallow ridge waveguides on a silicon photonic platform. The approach enables transport of light between two isolated waveguides through a mode of the silicon slab that acts as an optical bus. Due to the nature of the adiabatic protocol, the bus mode has minimal population and the transport is highly robust. We prove the concept and examine the robustness of this approach using rigorous modelling. We further demonstrate the utility of the approach by coupling power between two waveguides whilst bypassing an intermediate waveguide. This concept could form the basis of a new interconnect technology for silicon integrated photonic chips

    Trapped ion scaling with pulsed fast gates

    Get PDF
    Fast entangling gates for trapped ions offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on neighbouring ions only involve local ions when performed sufficiently fast, and we find that even a fast gate between distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below 10410^{-4}. By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling neighbouring pairs of ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.Comment: 29 pages, 10 figure

    Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis

    Get PDF
    Streptococcus uberis and Serratia marcescens are Gram-positive and Gram-negative bacteria, respectively, that induce clinical mastitis. Once initial host barrier systems have been breached by these pathogens, the innate immune system provides the next level of defense against these infectious agents. The innate immune response is characterized by the induction of pro-inflammatory cytokines, as well as increases in other accessory proteins that facilitate host recognition and elimination of the pathogens. The objective of the current study was to characterize the innate immune response during clinical mastitis elicited by these two important, yet less well-studied, Gram-positive and Gram-negative organisms. The pro-inflammatory cytokine response and changes in the levels of the innate immune accessory recognition proteins, soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), were studied. Decreased milk output, induction of a febrile response, and increased acute phase synthesis of LBP were all characteristic of the systemic response to intramammary infection with either organism. Infection with either bacteria similarly resulted in increased milk levels of IL-1β\beta, IL-8, IL-10, IL-12, IFN-γ\gamma, TNF-α\alpha, sCD14, LBP, and the complement component, C5a. However, the duration of and/or maximal changes in the increased levels of these inflammatory markers were significantly different for several of the inflammatory parameters assayed. In particular, S. uberis infection was characterized by the sustained elevation of higher milk levels of IL-1β\beta, IL-10, IL-12, IFN-γ\gamma, and C5a, relative to S. marcescens infection. Together, these data demonstrate the variability of the innate immune response to two distinct mastitis pathogens
    corecore