6 research outputs found
Beating the teapot effect
We investigate the dripping of liquids around solid surfaces in the regime of
inertial flows, a situation commonly encountered with the so-called "teapot
effect". We demonstrate that surface wettability is an unexpected key factor in
controlling flow separation and dripping, the latter being completely
suppressed in the limit of superhydrophobic substrates. This unforeseen
coupling is rationalized in terms of a novel hydro-capillary adhesion
framework, which couples inertial flows to surface wettability effects. This
description of flow separation successfully captures the observed dependence on
the various experimental parameters - wettability, flow velocity, solid surface
edge curvature-. As a further illustration of this coupling, a real-time
control of dripping is demonstrated using electro-wetting for contact angle
actuation.Comment: 4 pages; movies at http://lpmcn.univ-lyon1.fr/~lbocque
Making a splash with water repellency
A 'splash' is usually heard when a solid body enters water at large velocity.
This phenomena originates from the formation of an air cavity resulting from
the complex transient dynamics of the free interface during the impact. The
classical picture of impacts on free surfaces relies solely on fluid inertia,
arguing that surface properties and viscous effects are negligible at
sufficiently large velocities. In strong contrast to this large-scale
hydrodynamic viewpoint, we demonstrate in this study that the wettability of
the impacting body is a key factor in determining the degree of splashing. This
unexpected result is illustrated in Fig.1: a large cavity is evident for an
impacting hydrophobic sphere (1.b), contrasting with the hydrophilic sphere's
impact under the very same conditions (1.a). This unforeseen fact is
furthermore embodied in the dependence of the threshold velocity for air
entrainment on the contact angle of the impacting body, as well as on the ratio
between the surface tension and fluid viscosity, thereby defining a critical
capillary velocity. As a paradigm, we show that superhydrophobic impacters make
a big 'splash' for any impact velocity. This novel understanding provides a new
perspective for impacts on free surfaces, and reveals that modifications of the
detailed nature of the surface -- involving physico-chemical aspects at the
nanometric scales -- provide an efficient and versatile strategy for
controlling the water entry of solid bodies at high velocity.Comment: accepted for publication in Nature Physic
Effets du mouillage en hydrodynamique macroscopique : traînée, impacts et ruissellement
The influence of the surface properties on a micro-scale liquid flow near a solid wall has been pointed out in the last years; surface properties means here the liquid-solid affinity, in terms of the wetting angle formed between the liquid and the solid phase when a drop is deposited on the solid surface. In particular superhydrophobic surfaces allowed to reach a huge slip in microfluidic flows. One can wonder if the wetting properties do have any influence in macroscopic hydrodynamic situations. This thesis work aspires to provide some answers to this issue.In a first part, drag force measurements on immersed solids show that a superhydrophobic coating on the surfaces does not lead to the great expected drag reduction. The second aspect of this work concerns solid-liquid impacts situations, where triple contact lines are created : first, solid spheres falling on a liquid-gas interface, then liquid jet hitting solid impactors, what leads to liquid bells formation. In both cases, a huge coupling between surface properties and macroscopic hydrodynamics has been evidenced and rationalized.L'influence des propriétés de surfaces sur un écoulement liquide microscopique au voisinage d'une paroi a été mise en évidence au cours des dernières années. On entend ici par propriétés de surface l'affinité des solides avec les liquides mis en œuvre, caractérisée par l'angle de mouillage formé par une goutte liquide déposée sur la paroi solide. L'usage de surfaces superhydrophobes a permis notamment d'observer un glissement important du liquide sur la paroi solide pour des écoulements de microfluidique. On peut se demander si les propriétés de mouillage ont également une influence dans des situations hydrodynamiques de plus grande échelle, et c'est à cette problématique que l'on tente d'apporter des réponses dans cette thèse.Dans un premier temps, des mesures de forces réalisées sur des solides immergés dans un écoulement montrent que l'application d'un revêtement superhydrophobe ne permet pas d'obtenir la réduction radicale espérée de la traînée hydrodynamique. Par la suite, nous nous intéressons à des situations d'impact solide-liquide, mettant en œuvre des lignes de contact triples : impacts de sphères solides sur une interface liquide-gaz, puis impacts d'un jet liquide sur des impacteurs solides, conduisant à la formation de cloches liquides. Nous mettons en évidence et rationalisons dans ces deux cas le couplage fort qui relie les propriétés des surfaces à l'hydrodynamique macroscopique
Effets du mouillage en hydrodynamique macroscopique (traînée, impacts et ruissellement)
The influence of the surface properties on a micro-scale liquid flow near a solid wall has been pointed out in the last years; surface properties means here the liquid-solid affinity, in terms of the wetting angle formed between the liquid and the solid phase when a drop is deposited on the solid surface. In particular superhydrophobic surfaces allowed to reach a huge slip in microfluidic flows. One can wonder if the wetting properties do have any influence in macroscopic hydrodynamic situations. This thesis work aspires to provide some answers to this issue. In a first part, drag force measurements on immersed solids show that a superhydrophobic coating on the surfaces does not lead to the great expected drag reduction. The second aspect of this work concerns solid-liquid impacts situations, where triple contact lines are created : first, solid spheres falling on a liquid-gas interface, then liquid jet hitting solid impactors, what leads to liquid bells formation. In both cases, a huge coupling between surface properties and macroscopic hydrodynamics has been evidenced and rationalizedLYON1-BU.Sciences (692662101) / SudocSudocFranceF
Discrimination of positional isomers by ion mobility mass spectrometry Application to organic semiconductors
International audienceOrganic semiconductors are increasingly being used in organic-based opto-electronic devices. Since regioselective synthetic approaches are not always controlled, promising compounds are sometimes prepared following non-regioselective routes. Ion mobility mass spectrometry is here introduced as a direct method to distinguish isomers in mixtures, instead of undertaking time-consuming analytical chromatography procedures. © 2018 The Royal Society of Chemistry