106 research outputs found

    Self-Consistent Analysis of OH Zeeman Observations

    Full text link
    Crutcher, Hakobian, and Troland (2009) used OH Zeeman observations of four nearby molecular dark clouds to show that the ratio of mass to magnetic flux was smaller in the ~0.1 pc cores than in the ~1 pc envelopes, in contradiction to the prediction of ambipolar diffusion driven core formation. A crucial assumption was that the magnetic field direction is nearly the same in the envelope and core regions of each cloud. Mouschovias and Tassis (2009) have argued that the data are not consistent with this assumption, and presented a new analysis that changes the conclusions of the study. Here we show that the data are in fact consistent with the nearly uniform field direction assumption; hence, the original study is internally self-consistent and the conclusions are valid under the assumptions that were made. We also show that the Mouschovias and Tassis model of magnetic fields in cloud envelopes is inconsistent with their own analysis of the data. However, the data do not rule out a more complex field configuration that future observations may discern.Comment: 3 pages, 1 figure, accepted for publication by MNRAS Letter

    Testing Magnetic Star Formation Theory

    Full text link
    We report here observations of the Zeeman effect in the 18-cm lines of OH in the envelope regions surrounding four molecular cloud cores toward which detections of B(LOS) have been achieved in the same lines, and evaluate the ratio of mass to magnetic flux, M/Phi, between the cloud core and envelope. This relative M/Phi measurement reduces uncertainties in previous studies, such as the angle between B and the line of sight and the value of [OH/H]. Our result is that for all four clouds, the ratios R of the core to the envelope values of M/Phi are less than 1. Stated another way, the ratios R' of the core to the total cloud M/Phi are less than 1. The extreme case or idealized (no turbulence) ambipolar diffusion theory of core formation requires the ratio of the central to total M/Phi to be approximately equal to the inverse of the original subcritical M/Phi, or R' > 1. The probability that all four of our clouds have R' > 1 is 3 x 10^{-7}; our results are therefore significantly in contradiction with the hypothesis that these four cores were formed by ambipolar diffuson. Highly super-Alfvenic turbulent simulations yield a wide range of relative M/Phi, but favor a ratio R < 1, as we observe. Our experiment is limited to four clouds, and we can only directly test the predictions of the extreme-case "idealized" models of ambipolar-diffusion driven star formation that have a regular magnetic field morphology. Nonetheless, our experimental results are not consistent with the "idealized" strong field, ambipolar diffusion theory of star formation.Comment: 30 pages, 6 figures; paper revised after journal review, now accepted by Ap

    BIMA N2H+ 1-0 mapping observations of L183 -- fragmentation and spin-up in a collapsing, magnetized, rotating, pre-stellar core

    Full text link
    We have used the Berkeley-Illinois-Maryland Array (BIMA) to make deep N2H+ 1-0 maps of the pre-stellar core L183, in order to study the spatial and kinematic substructure within the densest part of the core. Three spatially and kinematically distinct clumps are detected, which we label L183-N1, L183-N2 and L183-N3. L183-N2 is approximately coincident with the submillimetre dust peak and lies at the systemic velocity of L183. Thus we conclude that L183-N2 is the central dense core of L183. L183-N1 and 3 are newly-discovered fragments of L183, which are marked by velocity gradients that are parallel to, but far stronger than, the velocity gradient of L183 as a whole, as detected in previous single-dish data. Furthermore, the ratio of the large-scale and small-scale velocity gradients, and the ratio of their respective size-scales, are consistent with the conservation of angular momentum for a rotating, collapsing core undergoing spin-up. The inferred axis of rotation is parallel to the magnetic field direction, which is offset from its long axis, as we have seen in other pre-stellar cores. Therefore, we propose that we have detected a fragmenting, collapsing, filamentary, pre-stellar core, rotating about its B-field, which is spinning up as it collapses. It will presumably go on to form a multiple protostellar system.Comment: 7 figures, 1 table, 21 pages, accepted for publication in Ap

    Magnetic Fields in Diffuse H I and Molecular Clouds

    Full text link
    This book chapter reviews the current state of observations of magnetic fields in diffuse H I and in dense molecular clouds. It covers techniques for measuring magnetic fields, the analysis of the observations, and the role of magnetic fields in the physics of interstellar clouds and in the star formation process.Comment: 50 pages, 14 figures, to be published as book chapter in 'Cosmic Magnetic Fields

    MAPPING MAGNETIC FIELDS IN MOLECULAR CLOUDS WITH THE CN ZEEMAN EFFECT

    Get PDF
    The role of magnetic fields in star formation remains controversial. Observations of the Zeeman effect provide the only available technique for directly measuring the strengths of magnetic fields in molecular clouds. We have mapped the Zeeman effect toward the massive star forming complex W3OH in the CN N=2-1 transition at 226 GHz with both the IRAM 30-m telescope and the CARMA array and have combined these data to produce a fully spatially sampled map of the magnetic field along the line of sight, with approximately 4 arcsec resolution. These are both the first CN Zeeman maps and the first detections of the Zeeman effect in the CN N=2-1 transition. We will present this map and discuss the astrophysical implications. This work may be considered to be a pathfinder for future similar ALMA observations, which have the potential to advance considerably our understanding of the role of magnetic fields in the star formation process

    Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations

    Full text link
    We have carried out an extensive survey of magnetic field strengths toward dark cloud cores in order to test models of star formation: ambipolar-diffusion driven or turbulence driven. The survey involved 500\sim500 hours of observing with the Arecibo telescope in order to make sensitive OH Zeeman observations toward 34 dark cloud cores. Nine new probable detections were achieved at the 2.5-sigma level; the certainty of the detections varies from solid to marginal, so we discuss each probable detection separately. However, our analysis includes all the measurements and does not depend on whether each position has a detection or just a sensitive measurement. Rather, the analysis establishes mean (or median) values over the set of observed cores for relevant astrophysical quantities. The results are that the mass-to-flux ratio is supercritical by 2\sim 2, and that the ratio of turbulent to magnetic energies is also 2\sim 2. These results are compatible with both models of star formation. However, these OH Zeeman observations do establish for the first time on a statistically sound basis the energetic importance of magnetic fields in dark cloud cores at densities of order 103410^{3-4} cm3^{-3}, and they lay the foundation for further observations that could provide a more definitive test.Comment: 22 pages, 2 figures, 2 table
    corecore