6,269 research outputs found

    The Correlation Function of Rich Clusters of Galaxies in CDM-like Models

    Full text link
    We use ensembles of high-resolution CDM simulations to investigate the shape and amplitude of the two point correlation function of rich clusters. The standard scale-invariant CDM model with Ω=1\Omega=1 provides a poor description of the clustering measured from the APM rich cluster redshift survey, which is better fitted by models with more power at large scales. The amplitudes of the rich cluster correlation functions measured from our models depend weakly on cluster richness. Analytic calculations of the clustering of peaks in a Gaussian density field overestimate the amplitude of the N-body cluster correlation functions, but reproduce qualitatively the weak trend with cluster richness. Our results suggest that the high amplitude measured for the correlation function of richness class R≄2R \geq 2 Abell clusters is either an artefact arising from incompleteness in the Abell catalogue, or an indication that the density perturbations in the early universe were very non-Gaussian.Comment: uuencoded compressed postscript ,MNRAS, in press, OUAST-93-1

    Reconstruction of cosmological density and velocity fields in the Lagrangian Zel'dovich Approximation

    Get PDF
    We present a method for reconstructing cosmological densityn for and velocity fields using the Lagrangian Zel'dovich formalism. . The method involves finding the least action solution for straight line particle paths in an evolving density field. Our starting point is the final, evolved density , so that we are in effect carrying out the standard Zel'dovich Approximation based process in reverse. Using a simple numerical algorithm we are able to minimise the action for the trajectories of several million particles. We apply our method to the evolved density taken from N-body simulations of different cold dark matter dominated universes, testing both the prediction for the present day velocity field and for the initial density field. The method is easy to apply, reproduces the accuracy of the forward Zel'dovich Approximation, and also works directly in redshift space with minimal modification.Comment: 13 pages with only 2 (out 9) figures. MNRAS in press. New Appendix shows the relation between shell crossing and PIZA. A completed version with all 9 figures available by anonymous ftp at ftp://bessel.mps.ohio-state.edu/pub/racc/piza.ps.gz (USA) or ftp://ftp-astro.physics.ox.ac.uk/pub/eg/piza3.ps.gz (UK

    Weak lensing of the Lyman-alpha forest

    Full text link
    The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman-alpha forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing of the forest could be measured using similar techniques that have been applied to the lensed Cosmic Microwave Background, and which have also been proposed for application to spectral data from 21cm radio telescopes. As with 21cm data, the forest has the advantage of spectral information, potentially yielding many lensed "slices" at different redshifts. We perform an illustrative idealized test, generating a high resolution angular grid of quasars (of order arcminute separation), and lensing the Lyman-alphaforest spectra at redshifts z=2-3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z~1. There currently exists a wealth of Lya forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyman-alpha forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high redshift Lya forest may become a useful new cosmological probe.Comment: 9 pages, 7 figures, submitted to MNRA

    Noise Estimates for Measurements of Weak Lensing from the Lyman-alpha Forest

    Full text link
    We have proposed a method for measuring weak lensing using the Lyman-alpha forest. Here we estimate the noise expected in weak lensing maps and power spectra for different sets of observational parameters. We find that surveys of the size and quality of the ones being done today and ones planned for the future will be able to measure the lensing power spectrum at a source redshift of z~2.5 with high precision and even be able to image the distribution of foreground matter with high fidelity on degree scales. For example, we predict that Lyman-alpha forest lensing measurement from the Dark Energy Spectroscopic Instrument survey should yield the mass fluctuation amplitude with statistical errors of 1.5%. By dividing the redshift range into multiple bins some tomographic lensing information should be accessible as well. This would allow for cosmological lensing measurements at higher redshift than are accessible with galaxy shear surveys and correspondingly better constraints on the evolution of dark energy at relatively early times.Comment: 8 pages, 8 figures, submitted to MNRA

    Cluster Correlation in Mixed Models

    Get PDF
    We evaluate the dependence of the cluster correlation length r_c on the mean intercluster separation D_c, for three models with critical matter density, vanishing vacuum energy (Lambda = 0) and COBE normalized: a tilted CDM (tCDM) model (n=0.8) and two blue mixed models with two light massive neutrinos yielding Omega_h = 0.26 and 0.14 (MDM1 and MDM2, respectively). All models approach the observational value of sigma_8 (and, henceforth, the observed cluster abundance) and are consistent with the observed abundance of Damped Lyman_alpha systems. Mixed models have a motivation in recent results of neutrino physics; they also agree with the observed value of the ratio sigma_8/sigma_25, yielding the spectral slope parameter Gamma, and nicely fit LCRS reconstructed spectra. We use parallel AP3M simulations, performed in a wide box (side 360/h Mpc) and with high mass and distance resolution, enabling us to build artificial samples of clusters, whose total number and mass range allow to cover the same D_c interval inspected through APM and Abell cluster clustering data. We find that the tCDM model performs substantially better than n=1 critical density CDM models. Our main finding, however, is that mixed models provide a surprisingly good fit of cluster clustering data.Comment: 22 pages + 10 Postscript figures. Accepted for publication in Ap

    The Peculiar Velocity Function of Galaxy Clusters

    Get PDF
    The peculiar velocity function of clusters of galaxies is determined using an accurate sample of cluster velocities based on Tully-Fisher distances of Sc galaxies (Giovanelli et al 1995b). In contrast with previous results based on samples with considerably larger velocity uncertainties, the observed velocity function does not exhibit a tail of high velocity clusters. The results indicate a low probability of â‰Č\lesssim\,5\% of finding clusters with one-dimensional velocities greater than ∌\sim 600 {\kms}. The root-mean-square one-dimensional cluster velocity is 293±\pm28 {\kms}. The observed cluster velocity function is compared with expectations from different cosmological models. The absence of a high velocity tail in the observed function is most consistent with a low mass-density (Ω∌\Omega \sim0.3) CDM model, and is inconsistent at ≳3σ\gtrsim 3 \sigma level with Ω\Omega= 1.0 CDM and HDM models. The root-mean-square one-dimensional cluster velocities in these models correspond, respectively, to 314, 516, and 632 {\kms} (when convolved with the observational uncertainties). Comparison with the observed RMS cluster velocity of 293±\pm28 {\kms} further supports the low-density CDM model.Comment: revised version accepted for publication in ApJ Letters, 18 pages, uuencoded PostScript with 3 figures included; complete paper available through WWW at http://www.astro.princeton.edu/~library/prep.htm

    Using Perturbative Least Action to Recover Cosmological Initial Conditions

    Get PDF
    We introduce a new method for generating initial conditions consistent with highly nonlinear observations of density and velocity fields. Using a variant of the Least Action method, called Perturbative Least Action (PLA), we show that it is possible to generate several different sets of initial conditions, each of which will satisfy a set of highly nonlinear observational constraints at the present day. We then discuss a code written to test and apply this method and present the results of several simulations.Comment: 24 pages, 6 postscript figures. Accepted for publication in Astrophysical Journa

    Measurement of the Spatial Cross-Correlation Function of Damped Lyman Alpha Systems and Lyman Break Galaxies

    Full text link
    We present the first spectroscopic measurement of the spatial cross-correlation function between damped Lyman alpha systems (DLAs) and Lyman break galaxies (LBGs). We obtained deep u'BVRI images of nine QSO fields with 11 known z ~ 3 DLAs and spectroscopically confirmed 211 R < 25.5 photometrically selected z > 2 LBGs. We find strong evidence for an overdensity of LBGs near DLAs versus random, the results of which are similar to that of LBGs near other LBGs. A maximum likelihood cross-correlation analysis found the best fit correlation length value of r_0 = 2.9^(+1.4)_(-1.5) h^(-1)Mpc using a fixed value of gamma = 1.6. The implications of the DLA-LBG clustering amplitude on the average dark matter halo mass of DLAs are discussed.Comment: 12 pages, 2 figures, accepted for publication in Astrophysical Journal Letter
    • 

    corecore