27 research outputs found

    Additions to the Flora of Garvin County, Oklahoma: Including a Complete Vascular Plant Checklist

    Get PDF
    A species list created from the Oklahoma Vascular Plants Database (OVPD) indicated that Garvin County, Oklahoma had been neglected by botanists. Our objective was to collect all vascular plant species encountered during three growing seasons to increase our botanical knowledge of the county. A total of 387 species were collected; 174 of these species had not been previously recorded for Garvin County in the OVPD. As a result, 14 families and 62 genera were added to the known flora of Garvin County. The majority of the species collected during this survey are assigned to five families of flowering plants: Poaceae (70 species), Asteraceae (63), Fabaceae (39), Cyperaceae (17), and Euphorbiaceae (16). Forty eight species (representing 13% of the taxa collected during this study) were not native to the United States; the families Poaceae and Fabaceae (with 18 and 10 species, respectively) exhibited the greatest number of introduced species collected in this survey. Five taxa on the Oklahoma Natural Heritage Inventory working list of rare Oklahoma plants were encountered. This collection effort increased the total number of vascular plant species recorded in the Oklahoma Vascular Plants Database for Garvin County to 628 species

    Fall-available tropical milkweed (Asclepias curassavica L.) may be a population sink for the monarch butterfly

    Get PDF
    Native plants provide the best habitat for pollinators, but non-native plants can supply resources to native pollinators. The non-native tropical milkweed (bloodflower or scarlet milkweed), Asclepias curassavica L., is a larval food source for the native monarch butterfly (Danaus plexippus). Asclepias curassavica has been widely planted in the southern U.S. where it blooms until late fall, retains healthy vegetation until frost, and does not die back until a hard freeze. In contrast, native Asclepias species senesce and are usually not suitable for monarch larvae consumption in the fall. The late availability of the non-native milkweed may trigger monarchs, normally migrating to Mexico, to break reproductive diapause and lay eggs on their host plant. To determine if non-native A. curassavica was more likely than native Asclepias species to attract egg-laying monarchs, we grew native Asclepias viridis Walter and Asclepias speciosa Torr. along with A. curassavica in Oklahoma and recorded the number of monarch eggs and caterpillars on each plant. From August 2019 until the first freeze, we observed 145 eggs and 39 caterpillars on 40 of 48 A. curassavica plants and one egg on one of 19 native Asclepias plants. First freeze occurred on 12 October. A majority of eggs were laid after 12 September resulting in most eggs having insufficient time to mature. This freeze date was nearly 3 weeks earlier than the average for this area. Our evidence suggests that the monarchs are differentially reacting to the availability of non-native and native Asclepias during late summer and fall

    Evaluation of the efficacy of a commercial inactivated genogroup 2b based porcine epidemic diarrhea virus (PEDV) vaccine and experimental live genogroup 1b exposure against 2b challenge

    Get PDF
    Abstract Porcine epidemic diarrhea virus strains from the G1b cluster are considered less pathogenic compared to the G2b cluster. The aim of this study was to compare the ability of G1b-based live virus exposure against use of a commercial G2b–based inactivated vaccine to protect growing pigs against G2b challenge. Thirty-nine PEDV naïve pigs were randomly divided into five groups: EXP-IM-1b (intramuscular G1b exposure; G2b challenge), EXP-ORAL-1b (oral G1b exposure; G2b challenge), VAC-IM-2b (intramuscular commercial inactivated G2b vaccination; G2b challenge), POS-CONTROL (sham-vaccination; G2b challenge) and NEG-CONTROL (sham-vaccination; sham-challenge). Pigs were vaccinated/exposed at 3 weeks of age (day post-vaccination 0, dpv 0), VAC-IM-2b pigs were revaccinated at dpv 14, and the pigs were challenged at dpv 28. Among all groups, VAC-IM-2b pigs had significantly higher anti-PEDV IgG levels on dpv 21 and 28 while EXP-ORAL-1b pigs had significantly higher anti-PEDV IgA levels on dpv 14, 21, 28 and 35. EXP-ORAL-1b also had detectable IgA in feces. Intramuscular PEDV exposure did not result in a detectable antibody response in EXP-IM-1b pigs. The fecal PEDV RNA levels in VAC-IM-2b pigs were significantly lower 5–7 days after challenge compared to the POS-CONTROL group. Under the study conditions a commercial inactivated G2b-based vaccine protected pigs against G2b challenge, as evidenced by reduction of PEDV RNA in feces for 3–4 logs during peak shedding and a shorter viral shedding duration. The oral, but not the intramuscular, experimental G1b-based live virus exposure induced a high anti-PEDV IgA response prior to challenge, which apparently did not impact PEDV shedding compared to POS-CONTROL pigs

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Additions to the Flora of Garvin County, Oklahoma: Including a Complete Vascular Plant Checklist

    No full text
    A species list created from the Oklahoma Vascular Plants Database (OVPD) indicated that Garvin County, Oklahoma had been neglected by botanists. Our objective was to collect all vascular plant species encountered during three growing seasons to increase our botanical knowledge of the county. A total of 387 species were collected; 174 of these species had not been previously recorded for Garvin County in the OVPD. As a result, 14 families and 62 genera were added to the known flora of Garvin County. The majority of the species collected during this survey are assigned to five families of flowering plants: Poaceae (70 species), Asteraceae (63), Fabaceae (39), Cyperaceae (17), and Euphorbiaceae (16). Forty eight species (representing 13% of the taxa collected during this study) were not native to the United States; the families Poaceae and Fabaceae (with 18 and 10 species, respectively) exhibited the greatest number of introduced species collected in this survey. Five taxa on the Oklahoma Natural Heritage Inventory working list of rare Oklahoma plants were encountered. This collection effort increased the total number of vascular plant species recorded in the Oklahoma Vascular Plants Database for Garvin County to 628 species
    corecore