15,714 research outputs found
Supersonic quantum communication
When locally exciting a quantum lattice model, the excitation will propagate
through the lattice. The effect is responsible for a wealth of non-equilibrium
phenomena, and has been exploited to transmit quantum information through spin
chains. It is a commonly expressed belief that for local Hamiltonians, any such
propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson
theorem states that in spin models, all effects caused by a perturbation are
limited to a causal cone defined by a constant speed, up to exponentially small
corrections. In this work we show that for translationally invariant bosonic
models with nearest-neighbor interactions, this belief is incorrect: We prove
that one can encounter excitations which accelerate under the natural dynamics
of the lattice and allow for reliable transmission of information faster than
any finite speed of sound. The effect is only limited by the model's range of
validity (eventually by relativity). It also implies that in non-equilibrium
dynamics of strongly correlated bosonic models far-away regions may become
quickly entangled, suggesting that their simulation may be much harder than
that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe
A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe
Environmental change alters ecosystem functioning and may put the provision of services to human at risk. This paper presents a spatially explicit and quantitative assessment of the corresponding vulnerability for Europe, using a new framework designed to answer multidisciplinary policy relevant questions about the vulnerability of the human-environment system to global change. Scenarios were constructed for a range of possible changes in socio-economic trends, land uses and climate. These scenarios were used as inputs in a range of ecosystem models in order to assess the response of ecosystem function as well as the changes in the services they provide. The framework was used to relate the impacts of changing ecosystem service provision for four sectors in relation to each other, and to combine them with a simple, but generic index for societal adaptive capacity. By allowing analysis of different sectors, regions and development pathways, the vulnerability assessment provides a basis for discussion between stakeholders and policymakers about sustainable management of Europe¿s natural resource
Ordered logit analysis for selectively sampled data
When customers are classified into ordered categories, which are defined from the outset, it may happen that the majority belongs to a single category. If a market researcher is interested in the correlation between the classification and individual characteristics, the natural question is whether one needs to collect data for all customers in that particular category. We address this question for the ordered logit model. We show that there is no need to consider all those customers. All that is required is a simple modification of the log-likelihood, which is based on Bayes' rule. We illustrate our proposed method on simulated data and on data concerning risk profiles of customers of an investment bank.ordered logit model;selective sampling;Bayes' rule
In Situ Thermal Inspection of Automated Fiber Placement Operations for Tow and Ply Defect Detection
The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems pose is the uniformity of the deposited prepreg tape layers, which complicates detection of laps, gaps, overlaps and twists. The current detection method used in industry involves halting fabrication and performing a time consuming, visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The innovation proposed in this paper is to use the preheated base layer as a through-transmission heat source for inspecting the newly added tape layer in situ using a thermographic camera mounted on to the AFP hardware. Such a system would not only increase manufacturing throughput by reducing inspection times, but it would also aid in process development for new structural designs or material systems by providing data on as-built parts. To this end, a small thermal camera was mounted onto an AFP robotic research platform at NASA, and thermal data was collected during typical and experimental layup operations. The data was post processed to reveal defects such as tow overlap/gap, wrinkling, and peel-up. Defects that would have been impossible to detect visually were also discovered in the data, such as poor/loss of adhesion between plies and the effects of vacuum debulking. This paper will cover the results of our experiments, and the plans for future versions of this inspection system
The influence of vision on susceptibility to acute motion sickness studied under quantifiable stimulus-response conditions
Twenty-four healthy men, 22 to 25 years of age, were exposed to stressful accelerations in a rotating room until acute mild motion sickness was elicited. Thirteen subjects in one group were exposed first with eyes open and later with eyes covered; the reverse order was used with the remaining eleven in the other group. The stressful accelerations were generated by requiring the subject to execute 120 standardized head movements at each 1-rpm increase in angular velocity until the desired endpoint was reached. When susceptibility to motion sickness with eyes open and covered is compared, 19 subjects were more susceptible with eyes open, three with eyes covered, and in the remaining two susceptibility was the same. The maximum difference in velocity between trial 1 and 2 was 7 rpm when susceptibility was greater with eyes open and 3 rpm when it was greater with eyes covered; the means, respectively, were 3.2 and 2.0 rpm. Among subjects manifesting greater susceptibility with eyes open than covered the group differences were small, indicating little or no adaptation effects. The findings are discussed mainly on the basis that vision may act also to decrease susceptibility under the stimulus conditions described
Telerobotic workstation design aid
Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design
Diagnostic criteria for grading the severity of acute motion sickness
Diagnostic criteria for grading severity of acute motion sicknes
Scalable reconstruction of density matrices
Recent contributions in the field of quantum state tomography have shown
that, despite the exponential growth of Hilbert space with the number of
subsystems, tomography of one-dimensional quantum systems may still be
performed efficiently by tailored reconstruction schemes. Here, we discuss a
scalable method to reconstruct mixed states that are well approximated by
matrix product operators. The reconstruction scheme only requires local
information about the state, giving rise to a reconstruction technique that is
scalable in the system size. It is based on a constructive proof that generic
matrix product operators are fully determined by their local reductions. We
discuss applications of this scheme for simulated data and experimental data
obtained in an ion trap experiment.Comment: 9 pages, 5 figures, replaced with published versio
Structural basis of TFIIH activation for nucleotide excision repair.
Nucleotide excision repair (NER) is the major DNA repair pathway that removes UV-induced and bulky DNA lesions. There is currently no structure of NER intermediates, which form around the large multisubunit transcription factor IIH (TFIIH). Here we report the cryo-EM structure of an NER intermediate containing TFIIH and the NER factor XPA. Compared to its transcription conformation, the TFIIH structure is rearranged such that its ATPase subunits XPB and XPD bind double- and single-stranded DNA, consistent with their translocase and helicase activities, respectively. XPA releases the inhibitory kinase module of TFIIH, displaces a 'plug' element from the DNA-binding pore in XPD, and together with the NER factor XPG stimulates XPD activity. Our results explain how TFIIH is switched from a transcription to a repair factor, and provide the basis for a mechanistic analysis of the NER pathway
Non-malleable encryption: simpler, shorter, stronger
In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit
- …