14,504 research outputs found
The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS).
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, affecting at least 10% of women of reproductive age. PCOS is typically characterized by the presence of at least two of the three cardinal features of hyperandrogenemia (high circulating androgen levels), oligo- or anovulation, and cystic ovaries. Hyperandrogenemia increases the severity of the condition and is driven by increased luteinizing hormone (LH) pulse secretion from the pituitary. Indeed, PCOS women display both elevated mean LH levels, as well as an elevated frequency of LH pulsatile secretion. The abnormally high LH pulse frequency, reflective of a hyperactive gonadotropin-releasing hormone (GnRH) neural circuit, suggests a neuroendocrine basis to either the etiology or phenotype of PCOS. Several studies in preclinical animal models of PCOS have demonstrated alterations in GnRH neurons and their upstream afferent neuronal circuits. Some rodent PCOS models have demonstrated an increase in GnRH neuron activity that correlates with an increase in stimulatory GABAergic innervation and postsynaptic currents onto GnRH neurons. Additional studies have identified robust increases in hypothalamic levels of kisspeptin, another potent stimulator of GnRH neurons. This review outlines the different brain and neuroendocrine changes in the reproductive axis observed in PCOS animal models, discusses how they might contribute to either the etiology or adult phenotype of PCOS, and considers parallel findings in PCOS women
Multifractal Properties of Aperiodic Ising Model: role of geometric fluctuations
The role of the geometric fluctuations on the multifractal properties of the
local magnetization of aperiodic ferromagnetic Ising models on hierachical
lattices is investigated. The geometric fluctuations are introduced by
generalized Fibonacci sequences. The local magnetization is evaluated via an
exact recurrent procedure encompassing a real space renormalization group
decimation. The symmetries of the local magnetization patterns induced by the
aperiodic couplings is found to be strongly (weakly) different, with respect to
the ones of the corresponding homogeneous systems, when the geometric
fluctuations are relevant (irrelevant) to change the critical properties of the
system. At the criticality, the measure defined by the local magnetization is
found to exhibit a non-trivial F(alpha) spectra being shifted to higher values
of alpha when relevant geometric fluctuations are considered. The critical
exponents are found to be related with some special points of the F(alpha)
function and agree with previous results obtained by the quite distinct
transfer matrix approach.Comment: 10 pages, 7 figures, 3 Tables, 17 reference
- …