7,716 research outputs found
Critical Temperature of a Trapped Bose Gas: Mean-Field Theory and Fluctuations
We investigate the possibilities of distinguishing the mean-field and
fluctuation effects on the critical temperature of a trapped Bose gas with
repulsive interatomic interactions. Since in a direct measurement of the
critical temperature as a function of the number of trapped atoms these effects
are small compared to the ideal gas results, we propose to observe
Bose-Einstein condensation by adiabatically ramping down the trapping
frequency. Moreover, analyzing this adiabatic cooling scheme, we show that
fluctuation effects can lead to the formation of a Bose condensate at
frequencies which are much larger than those predicted by the mean-field
theory.Comment: 4 pages of ReVTeX and 3 figures. Submitted to Physical Review
Measuring Electric Fields From Surface Contaminants with Neutral Atoms
In this paper we demonstrate a technique of utilizing magnetically trapped
neutral Rb-87 atoms to measure the magnitude and direction of stray electric
fields emanating from surface contaminants. We apply an alternating external
electric field that adds to (or subtracts from) the stray field in such a way
as to resonantly drive the trapped atoms into a mechanical dipole oscillation.
The growth rate of the oscillation's amplitude provides information about the
magnitude and sign of the stray field gradient. Using this measurement
technique, we are able to reconstruct the vector electric field produced by
surface contaminants. In addition, we can accurately measure the electric
fields generated from adsorbed atoms purposely placed onto the surface and
account for their systematic effects, which can plague a precision
surface-force measurement. We show that baking the substrate can reduce the
electric fields emanating from adsorbate, and that the mechanism for reduction
is likely surface diffusion, not desorption.Comment: 7 pages, 6 figures, published in Physical Review
The Structure Of The Accretion Disk In The ADC Source 4U 1822-371
The low-mass X-ray binary (LMXB) 4U 1822-371 has an accretion disk corona (ADC) that scatters X-ray photons from the inner disk and neutron star out of the line of sight. It has a high orbital inclination and the secondary star eclipses the disk and ADC. We have obtained new time-resolved UV spectrograms and V- and I-band photometry of 4U 1822-371. The large quadratic term in our new optical eclipse ephemeris confirms that the system has an extremely high rate of mass transfer and mass accretion. The C IV lambda lambda = 1548 - 1550 angstrom emission line has a half width of similar to 4400 km/s, indicating a strong, high velocity wind is being driven off the accretion disk. Near the disk the wind is optically thick in UV, V, and J and the eclipse analysis shows that in V and J the optically thick wind extends nearly to the outer edge of the disk. The ADC must also extend vertically to a height equal to approximately half the disk radius.Astronom
Normal-superfluid interaction dynamics in a spinor Bose gas
Coherent behavior of spinor Bose-Einstein condensates is studied in the
presence of a significant uncondensed (normal) component. Normal-superfluid
exchange scattering leads to a near-perfect local alignment between the spin
fields of the two components. Through this spin locking, spin-domain formation
in the condensate is vastly accelerated as the spin populations in the
condensate are entrained by large-amplitude spin waves in the normal component.
We present data evincing the normal-superfluid spin dynamics in this regime of
complicated interdependent behavior.Comment: 5 pages, 4 fig
Observation of Vortex Pinning in Bose-Einstein Condensates
We report the observation of vortex pinning in rotating gaseous Bose-Einstein
condensates (BEC). The vortices are pinned to columnar pinning sites created by
a co-rotating optical lattice superimposed on the rotating BEC. We study the
effects of two different types of optical lattice, triangular and square. With
both geometries we see an orientation locking between the vortex and the
optical lattices. At sufficient intensity the square optical lattice induces a
structural cross-over in the vortex lattice.Comment: 4 pages, 6 figures. Replaced by final version to appear in Phys. Rev.
Let
Decoherence-driven Cooling of a Degenerate Spinor Bose Gas
We investigate the relationship between the coherence of a partially
Bose-condensed spinor gas and its temperature. We observe cooling of the normal
component driven by decoherence as well the effect of temperature on
decoherence rates.Comment: 4 pages, 2 figure
The Mystery of the Ramsey Fringe that Didn't Chirp
We use precision microwave spectroscopy of magnetically trapped, ultra-cold
87Rb to characterize intra- and inter-state density correlations. The cold
collision shifts for both normal and condensed clouds are measured. The results
verify the presence of the sometimes controversial "factors of two", in
normal-cloud mean-field energies, both within a particular state and between
two distinct spin species. One might expect that as two spin species decohere,
the inter-state factor of two would revert to unity, but the associated
frequency chirp one naively expects from such a trend is not observed in our
data.Comment: Proceedings of the 18th International Conference on Atomic Physics
(ICAP 2002
- …