20 research outputs found

    Catch-and-Release Reagents for Broadscale Quantitative Proteomics Analyses

    No full text
    The relative quantification of protein expression levels in different cell samples through the utilization of stable isotope dilution has become a standard method in the field of proteomics. We describe here the development of a new reductively cleavable reagent which facilitates the relative quantification of thousands of proteins from only tens of micrograms of starting protein. The ligand features a novel disulfide moiety that links biotin and a thiol-reactive entity. The disulfide is stable to reductive conditions employed during sample labeling but is readily cleaved under mild conditions using tris-(2-carboxyethyl) phosphine (TCEP). This unique chemical property allows for the facile use of immobilized avidin in a manner equivalent to the use of conventional reversible-binding affinity resins. Target peptides are bound to avidin resin, washed rigorously, then cleaved directly from the resin, resulting in simplified sample handling procedures and reduced nonspecific interactions. Here we demonstrate the stability of the linker under two different reducing conditions and show how this “catch-and-release (CAR)” reagent can be used to quantitatively compare protein abundances from two distinct cellular lysates. Starting with only 40 μg protein from each sample, 1840 individual proteins were identified in a single experiment. Using in-house software for automated peak integration, 1620 of these proteins were quantified for differential expression. Keywords: peptide • proteome • isotope • labeling • quantification • cleavable • cysteine • mass spectrometry (MS) • chromatography (HPLC) • automated • parallel • avidin • biotin • purificatio

    UniDec Processing Pipeline for Rapid Analysis of Biotherapeutic Mass Spectrometry Data

    No full text
    Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody–drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications

    The Impact of Peptide Abundance and Dynamic Range on Stable-Isotope-Based Quantitative Proteomic Analyses

    No full text
    Recently, mass spectrometry has been employed in many studies to provide unbiased, reproducible, and quantitative protein abundance information on a proteome-wide scale. However, how instruments’ limited dynamic ranges impact the accuracy of such measurements has remained largely unexplored, especially in the context of complex mixtures. Here, we examined the distribution of peptide signal versus background noise (S/N) and its correlation with quantitative accuracy. With the use of metabolically labeled Jurkat cell lysate, over half of all confidently identified peptides had S/N ratios less than 10 when examined using both hybrid linear ion trap−Fourier transform ion cyclotron resonance and Orbitrap mass spectrometers. Quantification accuracy was also highly correlated with S/N. We developed a mass precision algorithm that significantly reduced measurement variance at low S/N beyond the use of highly accurate mass information alone and expanded it into a new software suite, Vista. We also evaluated the interplay between mass measurement accuracy and S/N; finding a balance between both parameters produced the greatest identification and quantification rates. Finally, we demonstrate that S/N can be a useful surrogate for relative abundance ratios when only a single species is detected

    Enhanced Analysis of Metastatic Prostate Cancer Using Stable Isotopes and High Mass Accuracy Instrumentation

    No full text
    The primary goal of proteomics is to gain a better understanding of biological function at the protein expression level. As the field matures, numerous technologies are being developed to aid in the identification, quantification and characterization of protein expression and post-translational modifications on a near-global scale. Stable isotope labeling by amino acids in cell culture is one such technique that has shown broad biological applications. While we have recently shown the application of this technology to a model of metastatic prostate cancer, we now report a substantial improvement in quantitative analysis using a linear ion-trap Fourier transform ion cyclotron resonance mass spectrometer (LTQ FT) and novel quantification software. This resulted in the quantification of nearly 1400 proteins, a greater than 3-fold increase in comparison to our earlier study. This dramatic increase in proteome coverage can be attributed to (1) use of a double-labeling strategy, (2) greater sensitivity, speed and mass accuracy provided by the LTQ FT mass spectrometer, and (3) more robust quantification software. Finally, by using a concatenated target/decoy protein database for our peptide searches, we now report these data in the context of an estimated false-positive rate of one percent. Keywords: mass spectrometry • SILAC • prostate cancer • quantitative proteomic

    Enhanced Analysis of Metastatic Prostate Cancer Using Stable Isotopes and High Mass Accuracy Instrumentation

    No full text
    The primary goal of proteomics is to gain a better understanding of biological function at the protein expression level. As the field matures, numerous technologies are being developed to aid in the identification, quantification and characterization of protein expression and post-translational modifications on a near-global scale. Stable isotope labeling by amino acids in cell culture is one such technique that has shown broad biological applications. While we have recently shown the application of this technology to a model of metastatic prostate cancer, we now report a substantial improvement in quantitative analysis using a linear ion-trap Fourier transform ion cyclotron resonance mass spectrometer (LTQ FT) and novel quantification software. This resulted in the quantification of nearly 1400 proteins, a greater than 3-fold increase in comparison to our earlier study. This dramatic increase in proteome coverage can be attributed to (1) use of a double-labeling strategy, (2) greater sensitivity, speed and mass accuracy provided by the LTQ FT mass spectrometer, and (3) more robust quantification software. Finally, by using a concatenated target/decoy protein database for our peptide searches, we now report these data in the context of an estimated false-positive rate of one percent. Keywords: mass spectrometry • SILAC • prostate cancer • quantitative proteomic

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified

    Analysis of prerequisites violations financial stability

    No full text
    Світова економічна криза 2007–2008 років і потрясіння, що охо- пили одночасно секторальні ринки кредитування, страхування, нерухомості та цінних паперів, продемонстрували, що системні ризики підтримки фінансової стабільності не були належним чином оцінені регуляторами

    Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events

    No full text
    Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein’s structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniquesthe first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified
    corecore