860 research outputs found

    Kinetics of in situ epoxidation of hemp oil under heterogeneous reaction conditions: an overview with preliminary results

    Get PDF
    Epoxidised hemp oil (EHO) was synthesised in the laboratory by reacting hemp oil (HO) with peroxyacetic acid (PA) in a batch reactor. The peroxyacetic acid was formed in situ from acetic acid (AA) and hydrogen peroxide (H2O2) in the presence on an acidic ion exchange resin (Amberlite IR-120) as catalyst. The overall reaction can be thought of as having two components. The first being epoxidation, a homogenous reaction which occurs at the interface of the aqueous phase and the HO phase while the second is the formation of PA, a heterogeneous reaction at the interface of the aqueous phase and the solid catalyst phase. The overall reaction kinetics were modelled by applying the Langmuir-Hinshelwood-Hougen-Watson (LHHW) model to heterogeneous reactions. Of the steps in the reaction it is postulated that the formation of PA is rate limiting, while the epoxidation occurs comparatively fast negating the requirement for an additional homogenous model. The diffusion steps in the reaction are also ignored in the kinetic model as it is believed that their effects are negligible due to intensive mixing in the batch reactor. Experiments were used to determine the optimal molar ratios of reactants and it was found that at these conditions 88% conversion of double bonds to epoxy groups occurred. The kinetic model was found to be in good agreement with the experimental results

    Human long intrinsically disordered protein regions are frequent targets of positive selection

    Get PDF
    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher-order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here we address this question by investigating the evolutionary pattern of more than 6,600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a-priori knowledge of disordered protein regions and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs 4-fold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts

    Gas gangrene and osteomyelitis of the foot in a diabetic patient treated with tea tree oil

    Get PDF
    Diabetic foot wounds represent a class of chronic non-healing wounds that can lead to the development of soft tissue infections and osteomyelitis. We reviewed the case of a 44-year-old female with a diabetic foot wound who developed gas gangrene while treating her wound with tea tree oil, a naturally derived antibiotic agent. This case report includes images that represent clinical examination and x-ray findings of a patient who required broad-spectrum antibiotics and emergent surgical consultation. Emergency Department (ED) detection of these complications may prevent loss of life or limb in these patients

    The Changing Face of Neolithic and Bronze Age Ireland: A Big Data Approach to the Settlement and Burial Records

    Get PDF
    This paper synthesizes and analyses the spatial and temporal patterns of archaeological sites in Ireland spanning the Neolithic period and the Bronze Age transition (4300-1900 cal BC). Included are a large number of unpublished, newly discovered sites excavated through development-led projects. Data were also sourced from national archives, published excavation reports and on-line databases. Software tools were developed to deal with the varying nature and resolution of these datasets, allowing chronology to be considered in the analysis to a degree that is usually not possible in prehistoric studies. Summed radiocarbon probabilities are used to examine the dataset using context- and sample-sensitive approaches. Visualisations of spatial and chronological data illustrate the expansion of Early Neolithic settlement, followed by an apparent attenuation of all settlement activity. The Late Neolithic and Chalcolithic periods are characterised by a resurgence and diversification of activity. To assess the significance of these observations, Irish radiocarbon data are compared to an idealized model derived from North American data. Even after taking various considerations into account, human population increases can be suggested to have occurred during the Early and Late Neolithic periods. Gaps and biases in the data are discussed and priorities for future work are identified

    Ring closing reaction in diarylethene captured by femtosecond electron crystallography

    Get PDF
    The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials

    Impacts of local human activities on the Antarctic environment

    Get PDF
    We review the scientific literature, especially from the past decade, on the impacts of human activities on the Antarctic environment. A range of impacts has been identified at a variety of spatial and temporal scales. Chemical contamination and sewage disposal on the continent have been found to be long-lived. Contemporary sewage management practices at many coastal stations are insufficient to prevent local contamination but no introduction of non-indigenous organisms through this route has yet been demonstrated. Human activities, particularly construction and transport, have led to disturbances of flora and fauna. A small number of non-indigenous plant and animal species has become established, mostly on the northern Antarctic Peninsula and southern archipelagos of the Scotia Arc. There is little indication of recovery of overexploited fish stocks, and ramifications of fishing activity oil bycatch species and the ecosystem could also be far-reaching. The Antarctic Treaty System and its instruments, in particular the Convention for the Conservation of Antarctic Marine Living Resources and the Environmental Protocol, provide a framework within which management of human activities take place. In the face of the continuing expansion of human activities in Antarctica, a more effective implementation of a wide range of measures is essential, in order to ensure comprehensive protection of the Antarctic environment, including its intrinsic, wilderness and scientific values which remains a fundamental principle of the Antarctic Treaty System. These measures include effective environmental impact assessments, long-term monitoring, mitigation measures for non-indigenous species, ecosystem-based management of living resources, and increased regulation of National Antarctic Programmes and tourism activities

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
    • …
    corecore