8,612 research outputs found
Pulsar Prospects for the Cherenkov Telescope Array
In the last few years, the Fermi-LAT telescope has discovered over a 100
pulsars at energies above 100 MeV, increasing the number of known gamma-ray
pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes,
such as MAGIC and VERITAS, have detected for the first time VHE pulsed
gamma-rays from the Crab pulsar. Such detections have revealed that the Crab
VHE spectrum follows a power-law up to at least 400 GeV, challenging most
theoretical models, and opening wide possibilities of detecting more pulsars
from the ground with the future Cherenkov Telescope Array (CTA). In this
contribution, we study the capabilities of CTA for detecting Fermi pulsars. For
this, we extrapolate their spectra with "Crab-like" power-law tails in the VHE
range, as suggested by the latest MAGIC and VERITAS results.Comment: 4 pages, 3 figures. In Proceedings of the 2012 Heidelberg Symposium
on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184
The Illumination and Growth of CRL 2688: An Analysis of New & Archival HST Observations
We present four-color images of CRL 2688 obtained in 2009 using the
Wide-Field Camera 3 on HST. The F606W image is compared with archival images in
very similar filters to monitor the proper motions of nebular structure. We
find that the bright N-S lobes have expanded uniformly by 2.5% and that the
ensemble of rings has translated radially by 0.07 in 6.65 y. The rings were
ejected every 100y for ~4 millennia until the lobes formed 250y ago. Starlight
scattered from the edges of the dark E-W dust lane is coincident with extant H2
images and leading tips of eight pairs of CO outflows. We interpret this as
evidence that fingers lie within geometrically opposite cones of opening angles
{\approx} 30{\circ} like those in CRL618. By combining our results of the rings
with 12CO absorption from the extended AGB wind we ascertain that the rings
were ejected at ~18 km s-1 with very little variation and that the distance to
CRL2688, v_{exp}{\dot\theta}_exp$, is 300 - 350 pc. Our 2009 imaging
program included filters that span 0.6 to 1.6{\mu}m. We constructed a
two-dimensional dust scattering model of stellar radiation through CRL2688 that
successfully reproduces the details of the nebular geometry, its integrated
spectral energy distribution, and nearly all of its color variations. The model
implies that the optical opacity of the lobes >~ 1, the dust particle density
in the rings decreases as radius^{-3} and that the mass and momentum of the AGB
winds and their rings have increased over time.Comment: (51 pages, 6 figures; accepted by ApJ
MAGIC upper limits on the very high energy emission from GRBs
The fast repositioning system of the MAGIC Telescope has allowed during its
first data cycle, between 2005 and the beginning of year 2006, observing nine
different GRBs as possible sources of very high energy gammas. These
observations were triggered by alerts from Swift, HETE-II, and Integral; they
started as fast as possible after the alerts and lasted for several minutes,
with an energy threshold varying between 80 and 200 GeV, depending upon the
zenith angle of the burst. No evidence for gamma signals was found, and upper
limits for the flux were derived for all events, using the standard analysis
chain of MAGIC. For the bursts with measured redshift, the upper limits are
compatible with a power law extrapolation, when the intrinsic fluxes are
evaluated taking into account the attenuation due to the scattering in the
Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to
"MAGIC upped limits on the VERY high energy emission from GRBs", re-organized
chapter with description of observation, removed non necessaries figures,
added plot of effective area depending on zenith angle, added an appendix
explaining the upper limit calculation, added some reference
Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope
We report on very high energy gamma-observations with the MAGIC Telescope of
the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain
the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed
gamma-ray emission to be exponentially cut off. The upper limit on the flux of
pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and
the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11
photons cm^-2 sec^-1. We discuss our results in the framework of recent model
predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio
Observations of H1426+428 with HEGRA -- Observations in 2002 and reanalysis of 1999&2000 data
The HEGRA system of imaging air Cherenkov telescopes has been used to observe
the BL Lac object H1426+428 () for 217.5 hours in 2002. In this data
set alone, the source is detected at a confidence level of ,
confirming this object as a TeV source. The overall flux level during the
observations in 2002 is found to be a factor of lower than during
the previous observations by HEGRA in 1999&2000. A new spectral analysis has
been carried out, improving the signal-to-noise ratio at the expense of a
slightly increased systematic uncertainty and reducing the relative energy
resolution to over a wide range of energies. The new
method has also been applied to the previously published data set taken in 1999
and 2000, confirming the earlier claim of a flattening of the energy spectrum
between 1 and 5 TeV. The data set taken in 2002 shows again a signal at
energies above 1 TeV. We combine the energy spectra as determined by the CAT
and VERITAS groups with our reanalyzed result of the 1999&2000 data set and
apply a correction to account for effects of absorption of high energy photons
on extragalactic background light in the optical to mid infrared band. The
shape of the inferred source spectrum is mostly sensitive to the
characteristics of the extragalactic background light between wavelengths of 1
and 15~mComment: 12 pages, 4 Figures, submitted to A&
Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope
We report the detection of a new source of very high energy (VHE, E_gamma >=
100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC
J0616+225, which is spatially coincident with SNR IC443. The observations were
carried out with the MAGIC telescope in the periods December 2005 - January
2006 and December 2006 - January 2007. Here we present results from this
source, leading to a VHE gamma-ray signal with a statistical significance of
5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux
consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/-
0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly
discuss the observational technique used and the procedure implemented for the
data analysis. The results are put in the perspective of the multiwavelength
emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter
Evidence for TeV gamma ray emission from Cassiopeia A
232 hours of data were accumulated from 1997 to 1999, using the HEGRA
Stereoscopic Cherenkov Telescope System to observe the supernova remnant
Cassiopeia A. TeV gamma ray emission was detected at the 5 sigma level, and a
flux of (5.8 +- 1.2(stat) +- 1.2(syst)) 10^(-9) ph m^(-2) s^(-1) above 1 TeV
was derived. The spectral distribution is consistent with a power law with a
differential spectral index of -2.5 +- 0.4(stat) +- 0.1(syst) between 1 and 10
TeV. As this is the first report of the detection of a TeV gamma ray source on
the "centi-Crab" scale, we present the analysis in some detail. Implications
for the acceleration of cosmic rays depend on the details of the source
modeling. We discuss some important aspects in this paper.Comment: 9 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
Insights into the mechanism of activation of the phosphorylation-independent response regulator NblR. Role of residues Cys69 and Cys96
Cyanobacteria respond to environmental stress conditions by adjusting their photosynthesis machinery. In Synechococcus sp. PCC 7942, phycobilisome degradation and other acclimation responses after nutrient or high light stress require activation by the phosphorylation-independent response regulator NblR. Structural modelling of its receiver domain suggested a role for Cys69 and Cys96 on activation of NblR. Here, we investigate this hypothesis by engineering Cys to Ala substitutions. In vivo and in vitro analyses indicated that mutations Cys69Ala and/or Cys96Ala have a minor impact on NblR function, structure, size, or oligomerization state of the protein, and that Cys69 and Cys96 do not seem to form disulphide bridges. Our results argue against the predicted involvement of Cys69 and Cys96 on NblR activation by redox sensing.This work was supported by the Spanish Ministerio de Ciencia e Innovación (grants BFU2009-07371 to A.C., BIO2009-10872 and BIO2010-15424 to A.M. and SAF2008-05742-C02-01 and CSD2008-00005 to J.L.N.) and the Generalitat Valenciana (grants ACOMP2006/083 and ACOMP2011/211 to A.C., ACOMP2010/114 and ACOMP2011/113 to J.L.N.). M.L. López-Redondo was a fellow of the Fundación Mutua Madrileña Automovilística
- …
