2 research outputs found

    Boron-Based Polyphosphazene-Functionalized Mxene Nanosheets for Polypropylene Composites with Improved Mechanical Properties and Flame Retardancy Applications

    No full text
    Developing high-performance resins with exceptional thermal oxidation stability, flame retardancy, smoke release suppression, and mechanical properties is an important industrial challenge. However, current flame-retardant design strategies often compromise other composite material properties. Especially when using polyolefin, unsaturated polyester, and other noncharred materials, it is usually necessary to add large amounts of flame-retardant fillers. In this study, a nanosynergist (Ti3C2Tx@PPD) for functionalizing Ti3C2Tx nanosheets with boron-based polyphosphazene was designed and adopted for a piperazine pyrophosphate/polypropylene (PAPP/PP) system as an application example. By controlling the chemical environment of cyclotriphosphazene, the condensed phase characteristics of polyphosphazene were preserved, but also an atypical vapor phase flame-retardant mechanism was activated. The combination of P/N/B elements and Ti3C2Tx exhibited excellent catalytic char-forming performance compared to others in the literature. Only 2% of incorporated Ti3C2Tx@PPD reduced the total heat released from the composite by 66.3%, the total smoke released by 71.8%, and the fire growth index by 49.4%. The incorporation of Ti3C2Tx@PPD inhibited deterioration of the mechanical properties of the composite. In addition, the pyrolysis path of Ti3C2Tx was revealed under a special environment. This study lays the foundation for the functional design of Ti3C2Tx nanomaterials that can be used in various applications that require high-performance resins

    Innovative Design and Preparation of Hierarchical BP–OH@HAP Structure: Study on Flame Retardancy and Mechanical Characteristics of UPR Nanocomposites

    No full text
    The flammability and brittleness of unsaturated polyester resin (UPR) were two serious problems that limited its application in high-precision fields. Here, the rod-shaped hydroxyapatite (HAP) was anchored on the surface of hydroxylated black phosphorus nanosheets (BP–OH) through a hydrothermal reaction to obtain a highly stable black phosphorus-based nano flame retardant (BP–OH@HAP). Owing to the exposure of many hydroxyl groups, BP–OH@HAP was well dispersed in the UPR matrix, and UPR nanocomposites with 0.5 wt % BP–OH@HAP realized a 71% increase in impact strength. The presence of BP–OH@HAP also greatly inhibited the combustion of UPR nanocomposites. In detail, the UPR composites with 2 wt % BP–OH@HAP achieved a 47.0% decrease in peak heat release rate (PHRR) along with 23.1% reductions in total heat release (THR), revealing the excellent ability of BP–OH@HAP to inhibit polymer combustion. In addition, UPR/BP–OH@HAP 2.0 achieved a 46 s increase in the time to PHRR (tPHRR) and a 62% reduction in the fire growth index (FGI), indicating that the fire spread of UPR/BP–OH@HAP 2.0 was significantly suppressed. Therefore, this work obtained the UPR/BP–OH@HAP nanocomposite with high fire safety through the innovation of inorganic nanotechnology, which provided new research ideas for improving the toughness and flame-retardant properties of UPR-based nanocomposites
    corecore