16 research outputs found
Conversion of DNA methyltransferases into azidonucleosidyl transferases via synthetic cofactors
Aziridine-based cofactor mimics have been synthesized and are shown to undergo methyltransferase-dependent DNA alkylation. Notably, each cofactor mimic possesses an azide functionality, to which can be attached an assortment of unnatural groups following methyltransferase-dependent DNA delivery. DNA duplexes modified with these cofactor mimics are capable of undergoing the Staudinger ligation with phosphines tethered to biological functionalities following enzymatic modification. This methodology provides a new tool by which to selectively modify DNA in a methyltransferase-dependent way. The conversion of biological methyltransferases into azidonucleosidyl transferases demonstrated here also holds tremendous promise as a means of identifying, as yet, unknown substrates of methylation
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Hydrolysis of O-Acetyl-ADP-ribose Isomers by ADP-ribosylhydrolase 3*
O-Acetyl-ADP-ribose (OAADPr), produced by the Sir2-catalyzed NAD+-dependent histone/protein deacetylase reaction, regulates diverse biological processes. Interconversion between two OAADPr isomers with acetyl attached to the C-2″ and C-3″ hydroxyl of ADP-ribose (ADPr) is rapid. We reported earlier that ADP-ribosylhydrolase 3 (ARH3), one of three ARH proteins sharing structural similarities, hydrolyzed OAADPr to ADPr and acetate, and poly(ADPr) to ADPr monomers. ARH1 also hydrolyzed OAADPr and poly(ADPr) as well as ADP-ribose-arginine, with arginine in α-anomeric linkage to C-1″ of ADP-ribose. Because both ARH3- and ARH1-catalyzed reactions involve nucleophilic attacks at the C-1″ position, it was perplexing that the ARH3 catalytic site would cleave OAADPr at either the 2″- or 3″-position, and we postulated the existence of a third isomer, 1″-OAADPr, in equilibrium with 2″- and 3″-isomers. A third isomer, consistent with 1″-OAADPr, was identified at pH 9.0. Further, ARH3 OAADPr hydrolase activity was greater at pH 9.0 than at neutral pH where 3″-OAADPr predominated. Consistent with our hypothesis, IC50 values for ARH3 inhibition by 2″- and 3″-N-acetyl-ADPr analogs of OAADPr were significantly higher than that for ADPr. ARH1 also hydrolyzed OAADPr more rapidly at alkaline pH, but cleavage of ADP-ribose-arginine was faster at neutral pH than pH 9.0. ARH3-catalyzed hydrolysis of OAADPr in H218O resulted in incorporation of one 18O into ADP-ribose by mass spectrometric analysis, consistent with cleavage at the C-1″ position. Together, these data suggest that ARH family members, ARH1 and ARH3, catalyze hydrolysis of the 1″-O linkage in their structurally diverse substrates
Developmental Differences Between Boys and Girls Results in Sex-specific Physical Fitness Changes from Fourth to Fifth Grade
Developmental differences between boys and girls result in sex-specific physical fitness changes from fourth to fifth grade. J Strength Cond Res 29(1): 175–180, 2015—To better understand how developmental differences impact performance on a broad selection of common physical fitness measures, we examined changes in boys and girls from fourth to fifth grade. Subjects included 273 boys (age, 9.5 ± 0.6 years; height, 139.86 ± 7.52 cm; mass, 38.00 ± 9.55 kg) and 295 girls (age, 9.6 ± 0.5 years; height, 139.30 ± 7.19 cm; weight, 37.44 ± 9.35 kg). We compared anthropometrics, cardiorespiratory and local muscular endurance, flexibility, power, and strength. A mixed-method analysis of variance was used to compare boys and girls at the 2 time points. Pearson correlation coefficients were used to examine relationships between anthropometric and fitness measurements. Significance was set at p10%) in both sexes, and girls became significantly taller than boys after growing 4.9% by fifth grade (vs. 3.5%). Both groups improved cardiorespiratory endurance and power, although boys performed better than girls at both time points. Boys were stronger in fourth grade, but girls improved more, leading to similar fifth-grade values. Girls were more flexible in fourth grade, but their significant decreases (~32.4%) coupled with large improvements in boys (~105%) resulted in similar fifth-grade scores. Body mass index (BMI) was positively correlated with run time regardless of grade or sex. Power was negatively correlated with BMI and run time in fourth grade. In conclusion, sex-specific differences in physical fitness are apparent before pubescence. Furthermore, this selection of measures reveals sexually dimorphic changes, which likely reflect the onset of puberty in girls. Coaches and teachers should account these developmental differences and their effects on anthropometrics and fitness in boys and girls
Developmental differences between boys and girls result in sex-specific physical fitness changes from fourth to fifth grade
To better understand how developmental differences impact performance on a broad selection of common physical fitness measures, we examined changes in boys and girls from fourth to fifth grade. Subjects included 273 boys (age, 9.5 ± 0.6 years; height, 139.86 ± 7.52 cm; mass, 38.00 6 9.55 kg) and 295 girls (age, 9.6 ± 0.5 years; height, 139.30 ± 7.19 cm; weight, 37.44 ± 9.35 kg). We compared anthropometrics, cardiorespiratory and local muscular endurance, flexibility, power, and strength. A mixedmethod analysis of variance was used to compare boys and girls at the 2 time points. Pearson correlation coefficients were used to examine relationships between anthropometric and fitness measurements. Significance was set at p # 0.05. Weight increased significantly (.10%) in both sexes, and girls became significantly taller than boys after growing 4.9% by fifth grade (vs. 3.5%). Both groups improved cardiorespiratory endurance and power, although boys performed better than girls at both time points. Boys were stronger in fourth grade, but girls improved more, leading to similar fifth-grade values. Girls were more flexible in fourth grade, but their significant decreases (;32.4%) coupled with large improvements in boys (;105%) resulted in similar fifth-grade scores. Body mass index (BMI) was positively correlated with run time regardless of grade or sex. Power was negatively correlated with BMI and run time in fourth grade. In conclusion, sex-specific differences in physical fitness are apparent before pubescence. Furthermore, this selection of measures reveals sexually dimorphic changes, which likely reflect the onset of puberty in girls. Coaches and teachers should account these developmental differences and their effects on anthropometrics and fitness in boys and girls