39 research outputs found

    Effects of in vitro altered microflora on immunolocalization of ladderlectin and intelectin in trout intestine

    Get PDF
    Lectins are carbohydrate-binding proteins or glycoproteins present in all types of organisms. They serve different biological functions including the roles in the innate immune system by recognizing carbohydrates that are found on the surface of potential pathogens. Soluble lectins have been identified from the plasma and mucus of various fish species. Rainbow trout ladderlectin (RTLL) and intelectin (RTInt) are two plasma proteins implicated in innate immune surveillance and pathogen elimination based upon their ability to bind Gram-negative bacteria and chitin. The present work, by using an in vitro model, was aimed to evaluate the expression of RTLL and RTInt, as visualized by specific antibodies, in the trout intestine exposed to distinct experimental conditions. The removed intestines were separately exposed to a mixture of the probiotic bacteria Lactobacillus rhamnosus, e Lactobacillus paracasei (group 1), a suspension of the pathogen bacteria Vibrio anguillarum (group 2), a mixture of the probiotics above, followed by the pathogens V. anguillarum (group 3). In the control group (group 4), the intestines were exposed to sterile saline solution and TSBgs in the same conditions, as above. Following exposure to V. anguillarum, a higher lectin reactivity was found, as compared with the controls, at the apical cell membrane of the epithelium, probably as a consequence of a stronger secretion induced by the pathogen. Consistently, the intestinal goblet cells, which in the controls proved to be the main site of the lectin expression, in the group 2 appeared unstained and nearly devoid of their contents. An increased immunostaining was observed also within inflammatory leucocytes, club cells and SP-positive cells. Notably, in the group 3, both the immunohistochemical pattern and the Western blotting analysis indicated that exposure of intestine to probiotics prior to V.anguillarum affects positively the RTInt expression, by reducing the pathogen-induced effect. These preliminary findings support a role for both RTLL and RTInt as putative innate defence molecules on intestinal mucosal surfaces. Further studies are required to confirm a possible involvement of probiotics in the RTInt-mediated immunomodulation

    Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives

    Full text link
    [EN] Modification of GO by organic molecules changes its catalytic activity in the hydrogen transfer from i-propanol to enones, affecting the selectivity to allyl alcohol and diastereoselectivity to the resulting stereoisomers. It is noteworthy the system does not contain metals and is recyclable.Coman, SM.; Podolean, I.; Tudorache, M.; Cojocaru, B.; Parvulescu, VI.; Puche Panadero, M.; Garc铆a G贸mez, H. (2017). Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chemical Communications. 53(74):10271-10274. doi:10.1039/c7cc05105kS1027110274537

    N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid

    Full text link
    [EN] N-Containing graphenes obtained either by simultaneous amination and reduction of graphene oxide or by pyrolysis of chitosan under an inert atmosphere have been found to act as catalysts for the selective wet oxidation of glucose to succinic acid. Selectivity values over 60% at complete glucose conversion have been achieved by performing the reaction at 160 degrees C and 18 atm O-2 pressure for 20 h. This activity has been attributed to graphenic-type N atoms on graphene. The active N-containing graphene catalysts were used four times without observing a decrease in conversion and selectivity of the process. A mechanism having tartaric and fumaric acids as key intermediates is proposed.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, Grapas and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. Prof. Simona M. Coman kindly acknowledges UEFISCDI for financial support (project PN-II-PT-PCCA-2013-4-1090, Nr. 44/2014). Cristina Bucur acknowledges Core Programme, Project PN-480103/2016.Rizescu, C.; Podolean, I.; Albero-Sancho, J.; Parvulescu, VI.; Coman, SM.; Bucur, C.; Puche Panadero, M.... (2017). N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry. 19(8):1999-2005. https://doi.org/10.1039/C7GC00473GS19992005198Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 41(24), 8075. doi:10.1039/c2cs35188aCherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. doi:10.1016/j.enconman.2010.01.015Christensen, C. H., Rass-Hansen, J., Marsden, C. C., Taarning, E., & Egeblad, K. (2008). The Renewable Chemicals Industry. ChemSusChem, 1(4), 283-289. doi:10.1002/cssc.200700168Lange, J.-P. (2007). Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining, 1(1), 39-48. doi:10.1002/bbb.7Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dCliment, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639dBjerre, A. B., Olesen, A. B., Fernqvist, T., Pl枚ger, A., & Schmidt, A. S. (2000). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568-577. doi:10.1002/(sici)1097-0290(19960305)49:53.0.co;2-6Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15-26. doi:10.1016/s0960-8524(01)00152-3Schmidt, A. S., & Thomsen, A. B. (1998). Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technology, 64(2), 139-151. doi:10.1016/s0960-8524(97)00164-8Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3-4), 501-551. doi:10.1016/s1093-0191(03)00032-7Mishra, V. S., Mahajani, V. V., & Joshi, J. B. (1995). Wet Air Oxidation. Industrial & Engineering Chemistry Research, 34(1), 2-48. doi:10.1021/ie00040a001Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. doi:10.1021/cr900354uPodolean, I., Rizescu, C., Bala, C., Rotariu, L., Parvulescu, V. I., Coman, S. M., & Garcia, H. (2016). Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition ofn-Butylamine to a RuIIICatalyst. ChemSusChem, 9(17), 2307-2311. doi:10.1002/cssc.201600474Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238hNavalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367dDhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653Huang, H., Huang, J., Liu, Y.-M., He, H.-Y., Cao, Y., & Fan, K.-N. (2012). Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chemistry, 14(4), 930. doi:10.1039/c2gc16681jLi, X.-H., Chen, J.-S., Wang, X., Sun, J., & Antonietti, M. (2011). Metal-Free Activation of Dioxygen by Graphene/g-C3N4Nanocomposites: Functional Dyads for Selective Oxidation of Saturated Hydrocarbons. Journal of the American Chemical Society, 133(21), 8074-8077. doi:10.1021/ja200997aSun, H., Wang, Y., Liu, S., Ge, L., Wang, L., Zhu, Z., & Wang, S. (2013). Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications, 49(85), 9914. doi:10.1039/c3cc43401jYang, J.-H., Sun, G., Gao, Y., Zhao, H., Tang, P., Tan, J., 鈥 Ma, D. (2013). Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy & Environmental Science, 6(3), 793. doi:10.1039/c3ee23623dRocha, R. P., Gon莽alves, A. G., Pastrana-Mart铆nez, L. M., Bordoni, B. C., Soares, O. S. G. P., 脫rf茫o, J. J. M., 鈥 Pereira, M. F. R. (2015). Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 249, 192-198. doi:10.1016/j.cattod.2014.10.046Wang, Y., Xie, Y., Sun, H., Xiao, J., Cao, H., & Wang, S. (2016). Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Applied Materials & Interfaces, 8(15), 9710-9720. doi:10.1021/acsami.6b01175Duan, X., Su, C., Zhou, L., Sun, H., Suvorova, A., Odedairo, T., 鈥 Wang, S. (2016). Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 194, 7-15. doi:10.1016/j.apcatb.2016.04.043Kang, J., Duan, X., Zhou, L., Sun, H., Tad茅, M. O., & Wang, S. (2016). Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 288, 399-405. doi:10.1016/j.cej.2015.12.040Sun, H., Kwan, C., Suvorova, A., Ang, H. M., Tad茅, M. O., & Wang, S. (2014). Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 154-155, 134-141. doi:10.1016/j.apcatb.2014.02.012Wang, X., Qin, Y., Zhu, L., & Tang, H. (2015). Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis. Environmental Science & Technology, 49(11), 6855-6864. doi:10.1021/acs.est.5b01059Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., 鈥 Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802jLi, X., Wang, H., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. (2009). Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 131(43), 15939-15944. doi:10.1021/ja907098fLong, D., Li, W., Ling, L., Miyawaki, J., Mochida, I., & Yoon, S.-H. (2010). Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir, 26(20), 16096-16102. doi:10.1021/la102425aLavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & Garc铆a, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gPrimo, A., S谩nchez, E., Delgado, J. M., & Garc铆a, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Chan, L. H., Hong, K. H., Xiao, D. Q., Lin, T. C., Lai, S. H., Hsieh, W. J., & Shih, H. C. (2004). Resolution of the binding configuration in nitrogen-doped carbon nanotubes. Physical Review B, 70(12). doi:10.1103/physrevb.70.125408Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., & Gong, J. R. (2010). Controllable N-Doping of Graphene. Nano Letters, 10(12), 4975-4980. doi:10.1021/nl103079jSun, L., Wang, L., Tian, C., Tan, T., Xie, Y., Shi, K., 鈥 Fu, H. (2012). Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2(10), 4498. doi:10.1039/c2ra01367cAsedegbega-Nieto, E., Perez-Cadenas, M., Morales, M. V., Bachiller-Baeza, B., Gallegos-Suarez, E., Rodriguez-Ramos, I., & Guerrero-Ruiz, A. (2014). High nitrogen doped graphenes and their applicability as basic catalysts. Diamond and Related Materials, 44, 26-32. doi:10.1016/j.diamond.2014.01.019Jiang, H., Yu, X., Nie, R., Lu, X., Zhou, D., & Xia, Q. (2016). Selective hydrogenation of aromatic carboxylic acids over basic N-doped mesoporous carbon supported palladium catalysts. Applied Catalysis A: General, 520, 73-81. doi:10.1016/j.apcata.2016.04.009Primo, A., Parvulescu, V., & Garcia, H. (2016). Graphenes as Metal-Free Catalysts with Engineered Active Sites. The Journal of Physical Chemistry Letters, 8(1), 264-278. doi:10.1021/acs.jpclett.6b0199

    Nitrogen-doped graphene as metal free basic catalyst for coupling reactions

    Full text link
    [EN] N-doped defective graphene [(N)G] obtained by pyrolysis at 900 degrees C of chitosan contains about 3.7% of residual N atoms, distributed as pyridinic, pyrrolic and graphitic N atoms. It has been found that (N)G acts as basic catalyst promoting two classical C-C bond forming nucleophilic additions in organic chemistry, such as the Michael and the Henry additions. Computational calculations at DFT level of models corresponding to the various N atoms leads to the conclusion that N atoms are more stable at the periphery of the graphene sheets and that H adsorption on these sites is a suitable descriptor to correlate with the catalytic activity of the various sites. According to these calculations the most active sites are pyridinic N atoms at zig-zag edges of the sheets. In addition, N as dopant changes the reactivity of the neigh. bour C atoms. Water was found a suitable solvent to achieve high conversions in both reactions. In this solvent the initial distribution of N atoms is affected due to the easy protonation of the N-py to N-pyH sites. As an effect, C edge sites adjacent at N-PyH with an appropriate reactivity towards the alpha-C-H bond breaking are formed. The present results show the general activity of N-doped graphene as base catalysts and illustrate the potential of carbocatalysis to promote reactions of general interest in organic synthesis. (C) 2019 Elsevier Inc. All rights reserved.This work was supported by UEFISCDI (PN-III-P4-ID-PCE-2016-0146. nr. 121/2017 and project number PN-III-P1-1.1-TE-2016-2191. nr. 89/2018). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69653-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. A.P thanks the Spanish Ministry of Science and Innovation for a Ramon y Cajal research associate contract.Candu, N.; Man, I.; Andrada, S.; Cojocaru, B.; Coman, SM.; Bucur, C.; Primo Arnau, AM.... (2019). Nitrogen-doped graphene as metal free basic catalyst for coupling reactions. Journal of Catalysis. 376:238-247. https://doi.org/10.1016/j.jcat.2019.07.011S23824737

    Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions

    Full text link
    [EN] Few-layered graphene-supported 1.1.1 and 2.0.0 oriented Au and Cu2O nanoplatelets were prepared by one-step pyrolysis of the corresponding metal salts embedded in chitosan at 900 degrees C under inert atmosphere. These nanometric films containing oriented nanoplatelets were investigated in a series of reactions as Ullmann-type homocoupling, C-N cross-coupling and Michael addition. The catalysts exhibited turnover numbers (TONs) three to six ord(e)rs of magnitude higher than those of analogous graphene-supported unoriented metal nanoparticles. In addition it has been found that oriented Cu2O and Au nanoplatelets grafted on defective graphene also exhibit activity to promote the Michael addition of compounds with active methylene and methine hydrogens to alpha,beta-conjugated ketone. An exhaustive characterization of these materials using spectroscopic and electron microscopy analyses has been carried out. CO2 thermoprogrammed desorption measurements show that films of these two graphene supported catalysts exhibit some basicity that can explain their activity to promote Michael addition.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. I.E.-A. and A.P thanks the Spanish Ministry for a postgraduate scholarship and for a Ramon y Cajal research associate contract, respectively.Candu, N.; Simion, A.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Parvulescu, VI.; Garc铆a G贸mez, H. (2018). Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Topics in Catalysis. 61(14):1449-1457. https://doi.org/10.1007/s11244-018-1043-xS144914576114Tao F (2016) Metal nanoparticles for catalysis: advances and applications. RSC Catalysis Series, CambridgeWildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182鈥193Ding M, Tang Y, Star A (2013) Understanding interfaces in metal鈥揼raphitic hybrid nanostructures. J Phys Chem Lett 4:147鈥160Primo A, Esteve I, Blandez JF, Dhakshinamoorthy A, Alvaro M, Candu N, Coman S, Parvulescu VI, Garcia H (2015) High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nat Commun 6:8561Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1鈥27Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603鈥632Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397鈥430Primo A, Atienzar P, Sanchez E, Delgado JM, Garcia H (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48:9254鈥9256Primo A, S谩nchez E, Delgado JM, Garcia H (2014) High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68:777鈥783Primo A, Forneli A, Corma A, Garcia H (2012) From biomass wastes to highly efficient CO2 adsorbents graphitisation of chitosan and alginate biopolymers. ChemSusChem 5:2207鈥2214Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312鈥1314Takagi D, Kobayashi Y, Hlbirio H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832鈥835Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Cresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30鈥35Wei D, Liu Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752鈥1758Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706鈥710Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu(111). Nano Lett 10:3512鈥3516Zhao L, Rim KT, Zhou H, He R, Heinz TF, Pinczuk A, Flynn GW, Pasupathy AN (2011) Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun 151:509鈥513Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547鈥4554Primo A, Esteve-Adell I, Candu N, Coman S, Parvulescu V, Garcia H (2016) One-step pyrolysis preparation of 1.1.1 oriented gold nanoplatelets supported on graphene and six orders of magnitude enhancement of the resulting catalytic activity. Angew Chem-Int Ed 55:607鈥612Perlmutter P (1992) Conjugate addition reactions in organic synthesis. Pergamon Press, ElmsfordChristoffers J (1998) Transition-metal catalysis of the Michael reaction of 1,3-dicarbonyl compounds and acceptor-activated alkenes. Eur J Org Chem 7:1259鈥1266Comelles J, Moreno-Ma帽as M, Vallribera A (2005) Michael additions catalysed by transition metals and lanthanide species. A review. Arkivoc 9:207鈥238Saegusa T, Ito Y, Tomitra S, Kinoshita H (1972) Synthetic reactions by complex catalysts. XXIV. A new catalyst of copper-isocyanide complex for the Michael addition. Bull Chem Soc Jpn 45:496鈥499Hidehiko K, Masahiro S, Nagata C (1999) Acceleration of Michael addition reaction by microwave irradiation in the presence of metal acetylacetonate catalysts. Nippon Kagaku Kaishi 2:145鈥148Oh E, Susumu K, Blanco-Canosa JB, Medintz IL, Dawson PE, Mattoussi H (2010) Preparation of stable maleimide-functionalized Au nanoparticles and their use in counting surface ligands. Small 6:1273鈥1278Ba H, Rodriguez-Fern谩ndez J, Stefani FD, Feldman J (2010) Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding. Nano Lett 10:3006鈥3012Hartlen KD, Ismaili H, Zhu J, Workentin MS (2012) Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions. Langmuir 28:864鈥87

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9鈥27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6鈥16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2鈥1.8), stage II (OR 1.6; 95% CI 1.4鈥1.9), and stage III or worse (OR 2.8; 95% CI 2.3鈥3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat