3,584 research outputs found
An improved method for estimating the neutron background in measurements of neutron capture reactions
The relation between the neutron background in neutron capture measurements
and the neutron sensitivity related to the experimental setup is examined. It
is pointed out that a proper estimate of the neutron background may only be
obtained by means of dedicated simulations taking into account the full
framework of the neutron-induced reactions and their complete temporal
evolution. No other presently available method seems to provide reliable
results, in particular under the capture resonances. An improved neutron
background estimation technique is proposed, the main improvement regarding the
treatment of the neutron sensitivity, taking into account the temporal
evolution of the neutron-induced reactions. The technique is complemented by an
advanced data analysis procedure based on relativistic kinematics of neutron
scattering. The analysis procedure allows for the calculation of the neutron
background in capture measurements, without requiring the time-consuming
simulations to be adapted to each particular sample. A suggestion is made on
how to improve the neutron background estimates if neutron background
simulations are not available.Comment: 11 pages, 9 figure
The Dynamical Dipole Mode in Fusion Reactions with Exotic Nuclear Beams
We report the properties of the prompt dipole radiation, produced via a
collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We
show that the gamma yield is sensitive to the density dependence of the
symmetry energy below/around saturation. Moreover we find that the angular
distribution of the emitted photons from such fast collective mode can
represent a sensitive probe of its excitation mechanism and of fusion dynamics
in the entrance channel.Comment: 5 pages, 3 figures, to appear in Phys.Rev.
Analysis of charged particle emission sources and coalescence in E/A = 61 MeV Ar + Al, Sn and Sn collisions
Single-particle kinetic energy spectra and two-particle small angle
correlations of protons (), deuterons () and tritons () have been
measured simultaneously in 61A MeV Ar + Al, Sn and
Sn collisions. Characteristics of the emission sources have been
derived from a ``source identification plot'' (--
plot), constructed from the single-particle invariant spectra, and compared to
the complementary results from two-particle correlation functions. Furthermore,
the source identification plot has been used to determine the conditions when
the coalescence mechanism can be applied for composite particles. In our data,
this is the case only for the Ar + Al reaction, where , and are
found to originate from a common source of emission (from the overlap region
between target and projectile). In this case, the coalescence model parameter,
-- the radius of the complex particle emission source in momentum
space, has been analyzed.Comment: 20 pages, 5 figures, submitted to Nuclear Physics
Isotopic Composition of Fragments in Nuclear Multifragmentation
The isotope yields of fragments, produced in the decay of the quasiprojectile
in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the
disassembly of the unique source formed in Xe+Cu central reactions at 30
MeV/nucleon, were measured. We show that the relative yields of neutron-rich
isotopes increase with the excitation energy in multifragmentation reaction. In
the framework of the statistical multifragmentation model which fairly well
reproduces the experimental observables, this behaviour can be explained by
increasing N/Z ratio of hot primary fragments, that corresponds to the
statistical evolution of the decay mechanism with the excitation energy: from a
compound-like decay to complete multifragmentation.Comment: 10 pages. 4 Postscript figures. Submitted to Physical Review C, Rapid
Communicatio
The Dynamical Dipole Mode in Dissipative Heavy Ion Collisions
We study the effect of a direct Giant Dipole Resonance () excitation in
intermediate dinuclear systems with exotic shape and charge distributions
formed in charge asymmetric fusion entrance channels. A related enhancement of
the gamma yield in the evaporation cascade of the fused nucleus is
expected. The dynamical origin of such extra strength will show up in a
characteristic anisotropy of the dipole gamma-emission. A fully microscopic
analysis of the fusion dynamics is performed with quantitative predictions of
the photon yield based on a dynamics- statistics coupling model. In
particular we focus our attention on the energy and mass dependence of the
effect.
We suggest a series of new experiments, in particular some optimal entrance
channel conditions. We stress the importance of using the new available
radioactive beams.Comment: 20 pages (Latex), 14 Postscript figure
On the optimal energy of epithermal neutron beams for BNCT
The optimal neutron energy for the treatment of deep-seated tumours using boron neutron capture therapy is studied by analysing various figures of merit. In particular, analysis of the therapeutic gain as a function of the neutron energy indicates that, with the currently available 10 B carriers, the most useful neutrons for the treatment of deep-seated tumours, in particular glioblastoma multiforme, are those with an energy of a few keV. Based on the results of the simulations, a method is presented which allows us to evaluate the quality of epithermal neutron beams of known energy spectrum, thus allowing us to compare different neutron-producing reactions and beam-shaping assembly configurations used for accelerator-based neutron sources
Nonlocal Treatment of the Buoyancy-Shear-Driven Boundary Layer
Abstract
A successful description of a convective boundary layer requires that the model employed takes into account the nonlocal nature of turbulent convection. In this paper new third-order moments (TOMs) are presented and tested. Numerical solutions are obtained using mean flow components and second-order moments as input. The problem of the turbulent damping of the TOMs is considered. The terms in the dynamic equations responsible for the unphysical growth of the TOMs are parameterized, taking into account their dependence on the integral length scale vertical profile. The calculated profiles are presented and tested against large-eddy simulation data and aircraft measurements. In both cases the results compare favorably
DOMANDE E RISPOSTE SUL SISTEMA INTEGRATO DI VALUTAZIONE PREVENTIVA DELL'INQUINAMENTO ELETTROMAGNETICO AMBIENTALE A BASSISSIMA FREQUENZA PLEIA-CERT
L’ARPAT e l’IFAC-CNR collaborano ormai da oltre cinque anni allo sviluppo del Catasto degli Elettrodotti della Regione Toscana (CERT) e di un sistema integrato di applicazioni, denominato PLEIA (Power Line Electromagnetic Impact Assessment), per il suo utilizzo ai fini del calcolo del campo magnetico nello spazio circostante gli elettrodotti e, in particolare, della determinazione delle fasce di rispetto. Per rendere possibile a queste istituzioni un utilizzo corretto e consapevole degli strumenti realizzati e dei risultati da essi forniti, è stato indispensabile documentare innanzitutto i presupposti tecnici e metodologici che stanno alla base delle applicazioni sviluppate: a questo scopo, è venuto spontaneamente a crearsi un gruppo di lavoro informale tra esperti dell’ARPAT, dell’IFAC e della Regione Toscana. Il gruppo ha lavorato secondo un meccanismo virtuoso in cui, da un lato, si è cercato di formulare quesiti puntuali e ben definiti e, dall'altro, di rispondervi nel modo più chiaro ed esauriente possibile. Ne è scaturito un documento a domande e risposte che, opportunamente modificato, è riproposto in questa sede, perché mette in evidenza in modo semplice ma non banale alcuni rilevanti aspetti tecnici, e costituisce un buon documento introduttivo sulle potenzialità del sistema sviluppato. Le prime domande riguardano il sistema PLEIA-CERT in generale, mentre nella seconda parte si approfondiscono in particolare le modalità di calcolo delle fasce di rispetto che, anche alla luce di recenti sviluppi normativi, hanno assunto un ruolo di primaria importanza
Mean first passage time analysis reveals rate-limiting steps, parallel pathways and dead ends in a simple model of protein folding
We have analyzed dynamics on the complex free energy landscape of protein
folding in the FOLD-X model, by calculating for each state of the system the
mean first passage time to the folded state. The resulting kinetic map of the
folding process shows that it proceeds in jumps between well-defined, local
free energy minima. Closer analysis of the different local minima allows us to
reveal secondary, parallel pathways as well as dead ends.Comment: 7 page
- …