93 research outputs found
Advancing Brain Research through Surface-Enhanced Raman Spectroscopy (SERS):Current Applications and Future Prospects
Surface-enhanced Raman spectroscopy (SERS) has recently emerged as a potent analytical technique with significant potential in the field of brain research. This review explores the applications and innovations of SERS in understanding the pathophysiological basis and diagnosis of brain disorders. SERS holds significant advantages over conventional Raman spectroscopy, particularly in terms of sensitivity and stability. The integration of label-free SERS presents promising opportunities for the rapid, reliable, and non-invasive diagnosis of brain-associated diseases, particularly when combined with advanced computational methods such as machine learning. SERS has potential to deepen our understanding of brain diseases, enhancing diagnosis, monitoring, and therapeutic interventions. Such advancements could significantly enhance the accuracy of clinical diagnosis and further our understanding of brain-related processes and diseases. This review assesses the utility of SERS in diagnosing and understanding the pathophysiological basis of brain disorders such as Alzheimer’s and Parkinson’s diseases, stroke, and brain cancer. Recent technological advances in SERS instrumentation and techniques are discussed, including innovations in nanoparticle design, substrate materials, and imaging technologies. We also explore prospects and emerging trends, offering insights into new technologies, while also addressing various challenges and limitations associated with SERS in brain research
Synthesis of the bulky phosphanide [P(SiiPr3)2]− and its stabilization of low-coordinate group 12 complexes
Here, we report an improved synthesis of the bulky phosphanide anion [P(SiiPr3)2]− in synthetically useful yields and its complexation to group 12 metals. The ligand is obtained as the sodium salt NaP(SiiPr3)2 1 in a 42% isolated yield and a single step from red phosphorus and sodium. This is a significantly higher-yielding and safer preparation compared to the previously reported synthesis of this ligand, and we have thus applied 1 to the synthesis of the two-coordinate complexes M[P(SiiPr3)2]2 (M = Zn, Cd, Hg). These group 12 complexes are all monomeric and with nonlinear P–M–P angles in the solid state, with DFT calculations suggesting that this bending is due to the steric demands of the ligand. Multinuclear NMR spectroscopy revealed complex second-order splitting patterns due to strong PP’ coupling. This work demonstrates that the synthesis of 1 is viable and provides a springboard for the synthesis of low-coordinate complexes featuring this unusual bulky ligand
Mechanistic investigations of the Fe( ii ) mediated synthesis of squaraines â€
The scission and homologation of CO is a fundamental process in the Fischer–Tropsch reaction. However, given the heterogeneous nature of the catalyst and forcing reaction conditions, it is difficult to determine the intermediates of this reaction. Here we report detailed mechanistic insight into the scission/homologation of CO by two-coordinate iron terphenyl complexes. Mechanistic investigations, conducted using in situ monitoring and reaction sampling techniques (IR, NMR, EPR and Mössbauer spectroscopy) and structural characterisation of isolable species, identify a number of proposed intermediates. Crystallographic and IR spectroscopic data reveal a series of migratory insertion reactions from 1Mes to 4Mes. Further studies past the formation of 4Mes suggest that ketene complexes are formed en route to squaraine 2Mes and iron carboxylate 3Mes, with a number of ketene containing structures being isolated, in addition to the formation of unbound, protonated ketene (8). The synthetic and mechanistic studies are supported by DFT calculations
Molecular Insights into α-Synuclein Fibrillation:A Raman Spectroscopy and Machine Learning Approach
The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein. Monomeric α-synuclein was produced, purified, and subjected to a 7-day fibrillation assay to generate preformed fibrils. Stages of α-synuclein fibrillation were analyzed using Raman spectroscopy, with aggregation confirmed through negative staining transmission electron microscopy, mass spectrometry, and light scattering analyses. A machine learning pipeline incorporating principal component analysis and uniform manifold approximation and projection was used to analyze the Raman spectral data and identify significant peaks, resulting in differentiation between sample groups. Notable spectral shifts in α-synuclein were found in various stages of aggregation. Early changes (D1) included increases in α-helical structures (1303, 1330 cm-1) and β-sheet formation (1045 cm-1), with reductions in COO- and CH2 bond regions (1406, 1445 cm-1). By D4, these structural shifts persist with additional β-sheet features. At D7, a decrease in β-sheet H-bonding (1625 cm-1) and tyrosine ring breathing (830 cm-1) indicates further structural stabilization, suggesting a shift from initial helical structures to stabilized β-sheets and aggregated fibrils. Additionally, alterations in peaks related to tyrosine, alanine, proline, and glutamic acid were identified, emphasizing the role of these amino acids in intramolecular interactions during the transition from α-helical to β-sheet conformational states in α-synuclein fibrillation. This approach offers insight into α-synuclein aggregation, enhancing the understanding of its role in Lewy body disease pathophysiology and potential diagnostic relevance.</p
Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines
The scission and homologation of CO is a fundamental process in the Fischer–Tropsch reaction. However, given the heterogeneous nature of the catalyst and forcing reaction conditions, it is difficult to determine the intermediates of this reaction. Here we report detailed mechanistic insight into the scission/homologation of CO by two-coordinate iron terphenyl complexes. Mechanistic investigations, conducted using in situ monitoring and reaction sampling techniques (IR, NMR, EPR and Mössbauer spectroscopy) and structural characterisation of isolable species, identify a number of proposed intermediates. Crystallographic and IR spectroscopic data reveal a series of migratory insertion reactions from 1Mes to 4Mes. Further studies past the formation of 4Mes suggest that ketene complexes are formed en route to squaraine 2Mes and iron carboxylate 3Mes, with a number of ketene containing structures being isolated, in addition to the formation of unbound, protonated ketene (8). The synthetic and mechanistic studies are supported by DFT calculations
Identification of Novel High-Frequency DNA Methylation Changes in Breast Cancer
Recent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer. The approach efficiently identified a large collection of novel differentially DNA methylated loci (∼200), a subset of which was independently validated across a panel of over 230 clinical samples. The differential cytosine methylation events were independent of patient age, tumor stage, estrogen receptor status or family history of breast cancer. The power of the global approach for discovery is underscored by the identification of a single differentially methylated locus, associated with the GHSR gene, capable of distinguishing infiltrating ductal breast carcinoma from normal and benign breast tissues with a sensitivity and specificity of 90% and 96%, respectively. Notably, the frequency of these molecular abnormalities in breast tumors substantially exceeds the frequency of any other single genetic or epigenetic change reported to date. The discovery of over 50 novel DNA methylation-based biomarkers of breast cancer may provide new routes for development of DNA methylation-based diagnostics and prognostics, as well as reveal epigenetically regulated mechanism involved in breast tumorigenesis
Molecular point-of-care testing for respiratory viruses versus routine clinical care in adults with acute respiratory illness presenting to secondary care: a pragmatic randomised controlled trial protocol (ResPOC)
Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background
The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we "extended" each PTA's data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA's Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA
Comparing recent PTA results on the nanohertz stochastic gravitational wave background
The Australian, Chinese, European, Indian, and North American pulsar timing
array (PTA) collaborations recently reported, at varying levels, evidence for
the presence of a nanohertz gravitational wave background (GWB). Given that
each PTA made different choices in modeling their data, we perform a comparison
of the GWB and individual pulsar noise parameters across the results reported
from the PTAs that constitute the International Pulsar Timing Array (IPTA). We
show that despite making different modeling choices, there is no significant
difference in the GWB parameters that are measured by the different PTAs,
agreeing within . The pulsar noise parameters are also consistent
between different PTAs for the majority of the pulsars included in these
analyses. We bridge the differences in modeling choices by adopting a
standardized noise model for all pulsars and PTAs, finding that under this
model there is a reduction in the tension in the pulsar noise parameters. As
part of this reanalysis, we "extended" each PTA's data set by adding extra
pulsars that were not timed by that PTA. Under these extensions, we find better
constraints on the GWB amplitude and a higher signal-to-noise ratio for the
Hellings and Downs correlations. These extensions serve as a prelude to the
benefits offered by a full combination of data across all pulsars in the IPTA,
i.e., the IPTA's Data Release 3, which will involve not just adding in
additional pulsars, but also including data from all three PTAs where any given
pulsar is timed by more than as single PTA.Comment: 21 pages, 9 figures, submitted to Ap
- …