877 research outputs found

    Long-term storage and age‐biased export of fluvial organic carbon: field evidence from West Iceland

    Get PDF
    Terrestrial organic carbon (OC) plays an important role in the carbon cycle, but questions remain regarding the controls and timescale(s) over which atmospheric CO₂ remains sequestered as particulate OC (POC). Motivated by observations that terrestrial POC is physically stored within soils and other shallow sedimentary deposits, we examined the role that sediment storage plays in the terrestrial OC cycle. Specifically, we tested the hypothesis that sediment storage impacts the age of terrestrial POC. We focused on the Efri Haukadalsá River catchment in Iceland as it lacks ancient sedimentary bedrock that would otherwise bias radiocarbon‐based determinations of POC storage duration by supplying pre‐aged “petrogenic” POC. Our radiocarbon measurements of riverine suspended sediments and deposits implicated millennial‐scale storage times. Comparison between the sample types (suspended and deposits) suggested an age offset between transported (suspended sediments) and stored (deposits) POC at the time of sampling, which is predicted by theory for the sediment age distribution in floodplains. We also observed that POC in suspended sediments is younger than the predicted mean storage duration generated from independent geomorphological data, which suggested an additional role for OC cycling. Consistent with this, we observed interparticle heterogeneity in the composition of POC by imaging our samples at the microscale using X‐ray absorption spectroscopy. Specifically, we found that particles within individual samples differed in their sulfur oxidation state, which is indicative of multiple origins and/or diagenetic histories. Altogether, our results support recent coupled sediment storage and OC cycling models and indicate that the physical drivers of sediment storage are important factors controlling the cadence of carbon cycling

    A novel PCFT gene mutation (p.Cys66LeufsX99) causing hereditary folate malabsorption

    Get PDF
    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder which is characterized by impaired intestinal folate malabsorption and impaired folate transport into the central nervous system. Mutations in the intestinal folate transporter PCFT have been reported previously in only 10 individuals with this disorder. The purpose of the current study was to describe the clinical phenotype and determine the molecular basis for this disorder in a family with four affected individuals. A consanguineous family of Pakistani origin with autosomal recessive HFM was ascertained and clinically phenotyped. After genetic linkage studies all coding exons of the PCFT gene were screened for mutations by direct sequencing. The clinical phenotype of four affected patients is described. Direct sequencing of PCFT revealed a novel homozygous frameshift mutation (c.194dupG) at a mononucleotide repeat in exon 1 predicted to result in a truncated protein (p.Cys66LeufsX99). This report extends current knowledge on the phenotypic manifestations of HFM and the PCFT mutation spectrum

    Microplastics and seafood: lower trophic organisms at highest risk of contamination

    Get PDF
    Microplastic debris is a prevalent global pollutant that poses a risk to marine organisms and ecological processes. It is also suspected to pose a risk to marine food security; however, these risks are currently poorly understood. In this review, we seek to understand the current knowledge pertaining to the contamination of commercially important fished and farmed marine organisms with microplastics, with the aim of answering the question “Does microplastic pollution pose a risk to marine food security?“. A semi-systematic review of studies investigating the number of microplastics found in commercially important organisms of different trophic levels suggests that microplastics do not biomagnify, and that organisms at lower trophic levels are more likely to contaminated by microplastic pollution than apex predators. We address the factors that influence microplastic consumption and retention by organisms. This research has implications for food safety and highlights the risks of microplastics to fisheries and aquaculture, and identifies current knowledge gaps within this research field

    Long-term storage and age‐biased export of fluvial organic carbon: field evidence from West Iceland

    Get PDF
    Terrestrial organic carbon (OC) plays an important role in the carbon cycle, but questions remain regarding the controls and timescale(s) over which atmospheric CO₂ remains sequestered as particulate OC (POC). Motivated by observations that terrestrial POC is physically stored within soils and other shallow sedimentary deposits, we examined the role that sediment storage plays in the terrestrial OC cycle. Specifically, we tested the hypothesis that sediment storage impacts the age of terrestrial POC. We focused on the Efri Haukadalsá River catchment in Iceland as it lacks ancient sedimentary bedrock that would otherwise bias radiocarbon‐based determinations of POC storage duration by supplying pre‐aged “petrogenic” POC. Our radiocarbon measurements of riverine suspended sediments and deposits implicated millennial‐scale storage times. Comparison between the sample types (suspended and deposits) suggested an age offset between transported (suspended sediments) and stored (deposits) POC at the time of sampling, which is predicted by theory for the sediment age distribution in floodplains. We also observed that POC in suspended sediments is younger than the predicted mean storage duration generated from independent geomorphological data, which suggested an additional role for OC cycling. Consistent with this, we observed interparticle heterogeneity in the composition of POC by imaging our samples at the microscale using X‐ray absorption spectroscopy. Specifically, we found that particles within individual samples differed in their sulfur oxidation state, which is indicative of multiple origins and/or diagenetic histories. Altogether, our results support recent coupled sediment storage and OC cycling models and indicate that the physical drivers of sediment storage are important factors controlling the cadence of carbon cycling

    Financial Conflicts of Interest Among Systematic Review Authors Investigating Interventions for Achilles Tendon Ruptures

    Get PDF
    Background: The primary aim of our study was to evaluate the effects of undisclosed financial conflicts of interest in Achilles tendon rupture repair-focused systematic reviews. Methods: Following a cross-sectional study design, we searched MEDLINE and Embase for Achilles tendon rupture repair systematic reviews. We performed screening and data extraction in a blind, triplicate fashion. Each systematic review was evaluated on the individual characteristics of the study, presence of undisclosed and disclosed conflicts of interest, favorability of results and conclusions, and the relationship between conflicts of interest and the favorability of results and conclusions. Results: Our search produced 172 total systematic reviews pertaining to Achilles tendon rupture repair; of those, only 12 were included in our study. Undisclosed conflicts of interest were found in half (6/12) of the included reviews. However, no significant association was found between conflict of interest and the favorability of results and conclusions. Conclusion: Undisclosed conflicts of interests were discovered in a large percentage of our sample. This lack of disclosure did not appear to increase the likelihood of the systematic review results or conclusions reporting favorability of the intervention being investigated. Level of evidence: Level II
    corecore