88 research outputs found
Linear Precoding with Low-Resolution DACs for Massive MU-MIMO-OFDM Downlink
We consider the downlink of a massive multiuser (MU) multiple-input
multiple-output (MIMO) system in which the base station (BS) is equipped with
low-resolution digital-to-analog converters (DACs). In contrast to most
existing results, we assume that the system operates over a frequency-selective
wideband channel and uses orthogonal frequency division multiplexing (OFDM) to
simplify equalization at the user equipments (UEs). Furthermore, we consider
the practically relevant case of oversampling DACs. We theoretically analyze
the uncoded bit error rate (BER) performance with linear precoders (e.g., zero
forcing) and quadrature phase-shift keying using Bussgang's theorem. We also
develop a lower bound on the information-theoretic sum-rate throughput
achievable with Gaussian inputs, which can be evaluated in closed form for the
case of 1-bit DACs. For the case of multi-bit DACs, we derive approximate, yet
accurate, expressions for the distortion caused by low-precision DACs, which
can be used to establish lower bounds on the corresponding sum-rate throughput.
Our results demonstrate that, for a massive MU-MIMO-OFDM system with a
128-antenna BS serving 16 UEs, only 3--4 DAC bits are required to achieve an
uncoded BER of 10^-4 with a negligible performance loss compared to the
infinite-resolution case at the cost of additional out-of-band emissions.
Furthermore, our results highlight the importance of taking into account the
inherent spatial and temporal correlations caused by low-precision DACs
Massive MU-MIMO-OFDM Downlink with One-Bit DACs and Linear Precoding
Massive multiuser (MU) multiple-input multiple- output (MIMO) is foreseen to
be a key technology in future wireless communication systems. In this paper, we
analyze the downlink performance of an orthogonal frequency division
multiplexing (OFDM)-based massive MU-MIMO system in which the base station (BS)
is equipped with 1-bit digital-to-analog converters (DACs). Using Bussgang's
theorem, we characterize the performance achievable with linear precoders (such
as maximal-ratio transmission and zero forcing) in terms of bit error rate
(BER). Our analysis accounts for the possibility of oversampling the
time-domain transmit signal before the DACs. We further develop a lower bound
on the information-theoretic sum-rate throughput achievable with Gaussian
inputs.
Our results suggest that the performance achievable with 1-bit DACs in a
massive MU-MIMO-OFDM downlink are satisfactory provided that the number of BS
antennas is sufficiently large
On Out-of-Band Emissions of Quantized Precoding in Massive MU-MIMO-OFDM
We analyze out-of-band (OOB) emissions in the massive multi-user (MU)
multiple-input multiple-output (MIMO) downlink. We focus on systems in which
the base station (BS) is equipped with low-resolution digital-to-analog
converters (DACs) and orthogonal frequency-division multiplexing (OFDM) is used
to communicate to the user equipments (UEs) over frequency-selective channels.
We demonstrate that analog filtering in combination with simple
frequency-domain digital predistortion (DPD) at the BS enables a significant
reduction of OOB emissions, but degrades the
signal-to-interference-noise-and-distortion ratio (SINDR) at the UEs and
increases the peak-to-average power ratio (PAR) at the BS. We use Bussgang's
theorem to characterize the tradeoffs between OOB emissions, SINDR, and PAR,
and to study the impact of analog filters and DPD on the error-rate performance
of the massive MU-MIMO-OFDM downlink. Our results show that by carefully tuning
the parameters of the analog filters, one can achieve a significant reduction
in OOB emissions with only a moderate degradation of error-rate performance and
PAR.Comment: Presented at the 2017 Asilomar Conference on Signals, Systems, and
Computers, 6 page
Impact of Residual Transmit RF Impairments on Training-Based MIMO Systems
Radio-frequency (RF) impairments, that exist intimately in wireless
communications systems, can severely degrade the performance of traditional
multiple-input multiple-output (MIMO) systems. Although compensation schemes
can cancel out part of these RF impairments, there still remains a certain
amount of impairments. These residual impairments have fundamental impact on
the MIMO system performance. However, most of the previous works have neglected
this factor. In this paper, a training-based MIMO system with residual transmit
RF impairments (RTRI) is considered. In particular, we derive a new channel
estimator for the proposed model, and find that RTRI can create an irreducible
estimation error floor. Moreover, we show that, in the presence of RTRI, the
optimal training sequence length can be larger than the number of transmit
antennas, especially in the low and high signal-to-noise ratio (SNR) regimes.
An increase in the proposed approximated achievable rate is also observed by
adopting the optimal training sequence length. When the training and data
symbol powers are required to be equal, we demonstrate that, at high SNRs,
systems with RTRI demand more training, whereas at low SNRs, such demands are
nearly the same for all practical levels of RTRI.Comment: Accepted for publication at the IEEE International Conference on
Communications (ICC 2014), 6 pages, 5 figure
One-Bit Massive MIMO: Channel Estimation and High-Order Modulations
We investigate the information-theoretic throughout achievable on a fading
communication link when the receiver is equipped with one-bit analog-to-digital
converters (ADCs). The analysis is conducted for the setting where neither the
transmitter nor the receiver have a priori information on the realization of
the fading channels. This means that channel-state information needs to be
acquired at the receiver on the basis of the one-bit quantized channel outputs.
We show that least-squares (LS) channel estimation combined with joint pilot
and data processing is capacity achieving in the single-user,
single-receive-antenna case.
We also investigate the achievable uplink throughput in a massive
multiple-input multiple-output system where each element of the antenna array
at the receiver base-station feeds a one-bit ADC. We show that LS channel
estimation and maximum-ratio combining are sufficient to support both multiuser
operation and the use of high-order constellations. This holds in spite of the
severe nonlinearity introduced by the one-bit ADCs
On the MIMO Capacity with Residual Transceiver Hardware Impairments
Radio-frequency (RF) impairments in the transceiver hardware of communication
systems (e.g., phase noise (PN), high power amplifier (HPA) nonlinearities, or
in-phase/quadrature-phase (I/Q) imbalance) can severely degrade the performance
of traditional multiple-input multiple-output (MIMO) systems. Although
calibration algorithms can partially compensate these impairments, the
remaining distortion still has substantial impact. Despite this, most prior
works have not analyzed this type of distortion. In this paper, we investigate
the impact of residual transceiver hardware impairments on the MIMO system
performance. In particular, we consider a transceiver impairment model, which
has been experimentally validated, and derive analytical ergodic capacity
expressions for both exact and high signal-to-noise ratios (SNRs). We
demonstrate that the capacity saturates in the high-SNR regime, thereby
creating a finite capacity ceiling. We also present a linear approximation for
the ergodic capacity in the low-SNR regime, and show that impairments have only
a second-order impact on the capacity. Furthermore, we analyze the effect of
transceiver impairments on large-scale MIMO systems; interestingly, we prove
that if one increases the number of antennas at one side only, the capacity
behaves similar to the finite-dimensional case. On the contrary, if the number
of antennas on both sides increases with a fixed ratio, the capacity ceiling
vanishes; thus, impairments cause only a bounded offset in the capacity
compared to the ideal transceiver hardware case.Comment: Accepted for publication at the IEEE International Conference on
Communications (ICC 2014), 7 pages, 6 figure
Adaptive Multicell 3D Beamforming in Multi-Antenna Cellular Networks
We consider a cellular network with multi-antenna base stations (BSs) and
single-antenna users, multicell cooperation, imperfect channel state
information, and directional antennas each with a vertically adjustable beam.
We investigate the impact of the elevation angle of the BS antenna pattern,
denoted as tilt, on the performance of the considered network when employing
either a conventional single-cell transmission or a fully cooperative multicell
transmission. Using the results of this investigation, we propose a novel
hybrid multicell cooperation technique in which the intercell interference is
controlled via either cooperative beamforming in the horizontal plane or
coordinated beamfroming in the vertical plane of the wireless channel, denoted
as adaptive multicell 3D beamforming. The main idea is to divide the coverage
area into two disjoint vertical regions and adapt the multicell cooperation
strategy at the BSs when serving each region. A fair scheduler is used to share
the time-slots between the vertical regions. It is shown that the proposed
technique can achieve performance comparable to that of a fully cooperative
transmission but with a significantly lower complexity and signaling
requirements. To make the performance analysis computationally efficient,
analytical expressions for the user ergodic rates under different beamforming
strategies are also derived.Comment: Accepted for publication in IEEE Transaction on Vehicular Technolog
An Efficient Signaling for Multi-mode Transmission in Multi-user MIMO
In this paper the downlink of a multi-user MIMO (MUMIMO)
system with multi-mode transmission is considered.
We propose a low-complexity algorithm for selecting users
and the corresponding number of data streams to each user,
denoted as user transmission mode (UTM). The selection
is only based on the average received signal-to-noise ratio
(SNR) from the base station (BS) for each user. This reduces
the overall amount of feedback for scheduling, as opposed
to techniques that assume perfect instantaneous channel
state information (CSI) from all users. Analytical average
throughput approximations are derived for each user at different UTMs. Simulation results demonstrate that the proposed algorithm provides performance close to dirty paper coding (DPC) with considerably reduced feedback
Shannon Capacity of LOS MIMO Channels with Uniform Circular Arrays
The Shannon capacity for the line-of-sight (LOS) multiple-input multiple-output (MIMO) channel between two perfectly aligned uniform circular arrays (UCAs) is derived from the first principles in a tutorial fashion. It is well known that harmonically related complex exponentials (also known in the literature as orbital angular momentum (OAM) modes) are eigenmodes for the spatially continuous channel. We show that the corresponding eigenvalues can be expressed as Bessel functions of the first kind. We also show that the spatially discrete channel between two UCAs with the same finite number of Hertzian dipole antennas on both sides has eigenmodes that are spatially sampled continuous OAM modes, and discrete eigenvalues that are aliased versions of the continuous eigenvalues. Through numerical solution of Maxwell\u27s equations, we verify that the discrete eigenvalues for UCAs with realistic dipole antennas are the same as with the Hertzian dipoles for the studied geometries (1~km hop distance, UCA radius 1 and 2 m, carrier frequency 70 GHz) as long as antenna spacing is not very dense
Distributed Massive MIMO via all-Digital Radio Over Fiber
A crucial challenge in the implementation of distributed massive multiple-input multiple-output (MIMO) architectures is to provide phase coherence while, at the same time, limit the complexity of the remote-radio heads (RRHs), which is important for cost-efficient scalability. To address this challenge, we present in this paper a phase-coherent distributed MIMO architecture, based on off-the-shelf, low-cost components. In the proposed architecture, up- and down-conversion are carried out at the central unit (CU). The RRHs are connected to the CU by means of optical fibers carrying oversampled radio-frequency (RF) 1-bit signals. In the downlink, the 1-bit signal is generated via sigma-delta modulation. At the RRH, the RF signal is recovered from the 1-bit signal through a bandpass filter and a power amplifier, and then fed to an antenna. In the uplink, the 1-bit signal is generated by a comparator whose inputs are the low-noise-amplified received RF signal and a suitably designed dither signal. The performance of the proposed architecture is evaluated with satisfactory results both via simulation and measurements from a testbed
- …