130 research outputs found

### On factorisation forests

The theorem of factorisation forests shows the existence of nested
factorisations -- a la Ramsey -- for finite words. This theorem has important
applications in semigroup theory, and beyond. The purpose of this paper is to
illustrate the importance of this approach in the context of automata over
infinite words and trees. We extend the theorem of factorisation forest in two
directions: we show that it is still valid for any word indexed by a linear
ordering; and we show that it admits a deterministic variant for words indexed
by well-orderings. A byproduct of this work is also an improvement on the known
bounds for the original result. We apply the first variant for giving a
simplified proof of the closure under complementation of rational sets of words
indexed by countable scattered linear orderings. We apply the second variant in
the analysis of monadic second-order logic over trees, yielding new results on
monadic interpretations over trees. Consequences of it are new caracterisations
of prefix-recognizable structures and of the Caucal hierarchy.Comment: 27 page

### Regular Cost Functions, Part I: Logic and Algebra over Words

The theory of regular cost functions is a quantitative extension to the
classical notion of regularity. A cost function associates to each input a
non-negative integer value (or infinity), as opposed to languages which only
associate to each input the two values "inside" and "outside". This theory is a
continuation of the works on distance automata and similar models. These models
of automata have been successfully used for solving the star-height problem,
the finite power property, the finite substitution problem, the relative
inclusion star-height problem and the boundedness problem for monadic-second
order logic over words. Our notion of regularity can be -- as in the classical
theory of regular languages -- equivalently defined in terms of automata,
expressions, algebraic recognisability, and by a variant of the monadic
second-order logic. These equivalences are strict extensions of the
corresponding classical results. The present paper introduces the cost monadic
logic, the quantitative extension to the notion of monadic second-order logic
we use, and show that some problems of existence of bounds are decidable for
this logic. This is achieved by introducing the corresponding algebraic
formalism: stabilisation monoids.Comment: 47 page

### Automata Minimization: a Functorial Approach

In this paper we regard languages and their acceptors - such as deterministic
or weighted automata, transducers, or monoids - as functors from input
categories that specify the type of the languages and of the machines to
categories that specify the type of outputs. Our results are as follows:
A) We provide sufficient conditions on the output category so that
minimization of the corresponding automata is guaranteed.
B) We show how to lift adjunctions between the categories for output values
to adjunctions between categories of automata.
C) We show how this framework can be instantiated to unify several phenomena
in automata theory, starting with determinization, minimization and syntactic
algebras. We provide explanations of Choffrut's minimization algorithm for
subsequential transducers and of Brzozowski's minimization algorithm in this
setting.Comment: journal version of the CALCO 2017 paper arXiv:1711.0306

### Boundedness in languages of infinite words

We define a new class of languages of $\omega$-words, strictly extending
$\omega$-regular languages.
One way to present this new class is by a type of regular expressions. The
new expressions are an extension of $\omega$-regular expressions where two new
variants of the Kleene star $L^*$ are added: $L^B$ and $L^S$. These new
exponents are used to say that parts of the input word have bounded size, and
that parts of the input can have arbitrarily large sizes, respectively. For
instance, the expression $(a^Bb)^\omega$ represents the language of infinite
words over the letters $a,b$ where there is a common bound on the number of
consecutive letters $a$. The expression $(a^Sb)^\omega$ represents a similar
language, but this time the distance between consecutive $b$'s is required to
tend toward the infinite.
We develop a theory for these languages, with a focus on decidability and
closure. We define an equivalent automaton model, extending B\"uchi automata.
The main technical result is a complementation lemma that works for languages
where only one type of exponent---either $L^B$ or $L^S$---is used.
We use the closure and decidability results to obtain partial decidability
results for the logic MSOLB, a logic obtained by extending monadic second-order
logic with new quantifiers that speak about the size of sets

### Unambiguous Separators for Tropical Tree Automata

In this paper we show that given a max-plus automaton (over trees, and with real weights) computing a function f and a min-plus automaton (similar) computing a function g such that f ? g, there exists effectively an unambiguous tropical automaton computing h such that f ? h ? g.
This generalizes a result of Lombardy and Mairesse of 2006 stating that series which are both max-plus and min-plus rational are unambiguous. This generalization goes in two directions: trees are considered instead of words, and separation is established instead of characterization (separation implies characterization). The techniques in the two proofs are very different

### Logics with rigidly guarded data tests

The notion of orbit finite data monoid was recently introduced by Bojanczyk
as an algebraic object for defining recognizable languages of data words.
Following Buchi's approach, we introduce a variant of monadic second-order
logic with data equality tests that captures precisely the data languages
recognizable by orbit finite data monoids. We also establish, following this
time the approach of Schutzenberger, McNaughton and Papert, that the
first-order fragment of this logic defines exactly the data languages
recognizable by aperiodic orbit finite data monoids. Finally, we consider
another variant of the logic that can be interpreted over generic structures
with data. The data languages defined in this variant are also recognized by
unambiguous finite memory automata

### The Bridge Between Regular Cost Functions and Omega-Regular Languages

In this paper, we exhibit a one-to-one correspondence between omega-regular languages and a subclass of regular cost functions over finite words, called omega-regular like cost functions. This bridge between the two models allows one to readily import classical results such as the last appearance record or the McNaughton-Safra constructions to the realm of regular cost functions. In combination with game theoretic techniques, this also yields a simple description of an optimal procedure of history-determinisation for cost automata, a central result in the theory of regular cost functions

### Rewriting in the partial algebra of typed terms modulo AC

AbstractWe study the partial algebra of typed terms with an associative commutative and idempotent operator (typed AC-terms). The originality lies in the representation of the typing policy by a graph which has a decidable monadic theory.In this paper we show on two examples that some results on AC-terms can be raised to the level of typed AC-terms. The examples are the results on rational languages (in particular their closure by complement) and the property reachability problem for ground rewrite systems (equivalently process rewrite systems)

### Transforming structures by set interpretations

We consider a new kind of interpretation over relational structures: finite
sets interpretations. Those interpretations are defined by weak monadic
second-order (WMSO) formulas with free set variables. They transform a given
structure into a structure with a domain consisting of finite sets of elements
of the orignal structure. The definition of these interpretations directly
implies that they send structures with a decidable WMSO theory to structures
with a decidable first-order theory. In this paper, we investigate the
expressive power of such interpretations applied to infinite deterministic
trees. The results can be used in the study of automatic and tree-automatic
structures.Comment: 36 page

- â€¦