691 research outputs found
XMM-Newton observations of the nitrogen-rich Wolf-Rayet star WR 1
We present XMM-Newton results for the X-ray spectrum from the N-richWolf-Rayet (WR) star WR1. The EPIC instrument was used to obtain a medium-resolution spectrum. The following features characterize this spectrum: ( a) significant emission "bumps" appear that are coincident with the wavelengths of typical strong lines, such as MgXI, SiXIII, and SXV; (b) little emission is detected above 4 keV, in contrast to recent reports of a hard component in the stars WR 6 and WR 110 which are of similar subtype; and ( c) evidence for sulfur K-edge absorption at about 2.6 keV, which could only arise from absorption of X- rays by the ambient stellar wind. The lack of hard emission in our dataset is suggestive that WR 1 may truly be a single star, thus representing the first detailed X-ray spectrum that isolates the WR wind alone ( in contrast to colliding wind zones). Although the properties of the S-edge are not well- constrained by our data, it does appear to be real, and its detection indicates that at least some of the hot gas in WR 1 must reside interior to the radius of optical depth unity for the total absorptive opacity at the energy of the edge
Investigating the igneous petrogenesis of Martian volcanic rocks using augite quantitative textural analysis of the Yamato nakhlites
To better understand volcanism on planetary bodies other than the Earth, the quantification of physical processes is needed. Here, the petrogenesis of the achondrite Martian Yamato (Y) nakhlites (Y 000593, Y 000749, and Y 000802) is reinvestigated via quantitative analysis of augite (high-Ca clinopyroxene) phenocrysts: crystal size distribution (CSD), spatial distribution patterns (SDP), and electron backscatter diffraction (EBSD). Results from CSD and EBSD quantitative data sets show augite to have continuous uninterrupted growth resulting in calculated minimum magma chamber residence times of either 88–117 ± 6 yr or 9–12 yr. All samples exhibit low-intensity S-LS type crystallographic preferred orientation. Directional strain is observed across all samples with intracrystalline misorientation patterns indicative of (100)[001]:(001)[100] (Y 000593 and Y 000802) and {110}<001>or {110}1/2<110> (Y 000749) slip systems. SDP results indicate phenocryst-bearing crystal-clustered rock signatures. Combined findings from this work show that the Yamato nakhlites formed on Mars as individual low-viscosity lava flows or sills. This study shows that through combining these different quantitative techniques over multiple samples, one can more effectively compare and interpret resulting data to gain a more robust, geologically contextualized petrogenetic understanding of the rock suite being studied. The techniques used in this study should be equally applicable to igneous achondrites from other parent bodies
Mid-infrared interferometry of the massive young stellar object NGC3603 - IRS 9A
We present observations and models for one of these MYSO candidates, NGC3603
IRS 9A. Our goal is to investigate with infrared interferometry the structure
of IRS 9A on scales as small as 200AU, exploiting the fact that a cluster of O
and B stars has blown away much of the obscuring foreground dust and gas.
Observations in the N-band were carried out with the MIDI beam combiner
attached to the VLTI. Additional interferometric observations which probe the
structure of IRS 9A on larger scales were performed with an aperture mask
installed in the T-ReCS instrument of Gemini South. The spectral energy
distribution (SED) is constrained by the MIDI N-band spectrum and by data from
the Spitzer Space Telescope. Our efforts to model the structure and SED of IRS
9A range from simple geometrical models of the brightness distribution to one-
and two-dimensional radiative transfer computations. The target is resolved by
T-ReCS, with an equivalent (elliptical) Gaussian width of 330mas by 280mas
(2300 AU by 2000 AU). Despite this fact, a warm compact unresolved component
was detected by MIDI which is possibly associated with the inner regions of a
flattened dust distribution. Based on our interferometric data, no sign of
multiplicity was found on scales between about 200AU and 700AU projected
separation. A geometric model consisting of a warm (1000 K) ring (400 AU
diameter) and a cool (140 K) large envelope provides a good fit to the data. No
single model fitting all visibility and photometric data could be found, with
disk models performing better than spherical models. While the data are clearly
inconsistent with a spherical dust distribution they are insufficient to prove
the existence of a disk but rather hint at a more complex dust distribution.Comment: 8 pages, 11 figures. Accepted for publication in A&
Theoretical X-ray Line Profiles from Colliding Wind Binaries
We present theoretical X-ray line profiles from a range of model colliding
wind systems. In particular, we investigate the effects of varying the stellar
mass-loss rates, the wind speeds, and the viewing orientation. We find that a
wide range of theoretical line profile shapes is possible, varying with orbital
inclination and phase. At or near conjunction, the lines have approximately
Gaussian profiles, with small widths (HWHM ~ 0.1 v_\infty) and definite blue-
or redshifts (depending on whether the star with the weaker wind is in front or
behind). When the system is viewed at quadrature, the lines are generally much
broader (HWHM ~ v_\infty), flat-topped and unshifted. Local absorption can have
a major effect on the observed profiles - in systems with mass-loss rates of a
few times 10^{-6} Msol/yr the lower energy lines (E <~ 1 kev) are particularly
affected. This generally results in blueward-skewed profiles, especially when
the system is viewed through the dense wind of the primary. The orbital
variation of the line widths and shifts is reduced in a low inclination binary.
The extreme case is a binary with i = 0 degrees, for which we would expect no
line profile variation.Comment: 15 pages, 15 figures. To appear in MNRA
Modelling the clumping-induced polarimetric variability of hot star winds
Clumping in the winds of massive stars may significantly reduce empirical
mass-loss rates, and which in turn may have a large impact on our understanding
of massive star evolution. Here, we investigate wind-clumping through the
linear polarization induced by light scattering off the clumps. Through the use
of an analytic wind clumping model, we predict the time evolution of the linear
polarimetry over a large parameter space. We concentrate on the Luminous Blue
Variables, which display the greatest amount of polarimetric variability and
for which we recently conducted a spectropolarimetric survey. Our model results
indicate that the observed level of polarimetric variability can be reproduced
for two regimes of parameter space: one of a small number of massive,
optically-thick clumps; and one of a very large number of low-mass clumps.
Although a systematic time-resolved monitoring campaign is required to
distinguish between the two scenarios, we currently favour the latter, given
the short timescale of the observed polarization variability. As the
polarization is predicted to scale linearly with mass-loss rate, we anticipate
that all hot stars with very large mass-loss rates should display polarimetric
variability. This is consistent with recent findings that intrinsic
polarization is more common in stars with strong H emission.Comment: 12 pages, 11 figures, accepted to A&
Young children's interpersonal trust consistency as a predictor of future school adjustment
Young children’s interpersonal trust consistency was examined as a predictor of future school adjustment. One hundred and ninety two (95 male and 97 female, M age = 6 years 2 months, SD age = 6 months) children from school years 1 and 2 in the United Kingdom were tested twice over one-year. Children completed measures of peer trust and school adjustment and teachers completed the Short-Form Teacher Rating Scale of School Adjustment. Longitudinal quadratic relationships emerged between consistency of children’s peer trust beliefs and peer-reported trustworthiness and school adjustment and these varied according to social group, facet of trust, and indictor of school adjustment. The findings support the conclusion that interpersonal trust consistency, especially for secret-keeping, predicts aspects of young children’s school adjustment
Mass-loss rates of Very Massive Stars
We discuss the basic physics of hot-star winds and we provide mass-loss rates
for (very) massive stars. Whilst the emphasis is on theoretical concepts and
line-force modelling, we also discuss the current state of observations and
empirical modelling, and address the issue of wind clumping.Comment: 36 pages, 15 figures, Book Chapter in "Very Massive Stars in the
Local Universe", Springer, Ed. Jorick S. Vin
An investigation of the impact of young children's self-knowledge of trustworthiness on school adjustment: a test of the realistic self-knowledge and positive illusion models
The study aimed to examine the relationship between self-knowledge of trustworthiness and young children’s school adjustment. One hundred and seventy-three (84 male and 89 female) children from school years 1 and 2 in the United Kingdom (mean age 6 years 2 months) were tested twice over one year. Children’s trustworthiness was assessed using: (a) self-report at Time 1 and Time 2, (b) peers’ reports at Time 1 and Time 2, and (c) teacher-reports at Time 2. School adjustment was assessed by child-rated school-liking and the Short-Form Teacher Rating Scale of School Adjustment. Longitudinal quadratic relationships were found between school adjustment and children’s self-knowledge, using peer-reported trustworthiness as a reference: more accurate self-knowledge of trustworthiness predicted increases in school adjustment. Comparable concurrent quadratic relationships were found between teacher-rated school adjustment and children’s self-knowledge, using teacher-reported trustworthiness as a reference, at Time 2. The findings support the conclusion that young children’s psychosocial adjustment is best accounted for by the realistic self-knowledge model (Colvin & Block, 1994)
Instabilities in the Envelopes and Winds of Very Massive Stars
The high luminosity of Very Massive Stars (VMS) means that radiative forces
play an important, dynamical role both in the structure and stability of their
stellar envelope, and in driving strong stellar-wind mass loss. Focusing on the
interplay of radiative flux and opacity, with emphasis on key distinctions
between continuum vs. line opacity, this chapter reviews instabilities in the
envelopes and winds of VMS. Specifically, we discuss how: 1) the iron opacity
bump can induce an extensive inflation of the stellar envelope; 2) the density
dependence of mean opacity leads to strange mode instabilities in the outer
envelope; 3) desaturation of line-opacity by acceleration of near-surface
layers initiates and sustains a line-driven stellar wind outflow; 4) an
associated line-deshadowing instability leads to extensive small-scale
structure in the outer regions of such line-driven winds; 5) a star with
super-Eddington luminosity can develop extensive atmospheric structure from
photon bubble instabilities, or from stagnation of flow that exceeds the
"photon tiring" limit; 6) the associated porosity leads to a reduction in
opacity that can regulate the extreme mass loss of such continuum-driven winds.
Two overall themes are the potential links of such instabilities to Luminous
Blue Variable (LBV) stars, and the potential role of radiation forces in
establishing the upper mass limit of VMS.Comment: 44 pages, 13 figures. Chapter to appear in the book "Very Massive
Stars in the Local Universe", Springer, J.S. Vink, e
- …