4,166 research outputs found

    Two Structural Results for Low Degree Polynomials and Applications

    Get PDF
    In this paper, two structural results concerning low degree polynomials over finite fields are given. The first states that over any finite field F\mathbb{F}, for any polynomial ff on nn variables with degree d≀log⁥(n)/10d \le \log(n)/10, there exists a subspace of Fn\mathbb{F}^n with dimension Ω(d⋅n1/(d−1))\Omega(d \cdot n^{1/(d-1)}) on which ff is constant. This result is shown to be tight. Stated differently, a degree dd polynomial cannot compute an affine disperser for dimension smaller than Ω(d⋅n1/(d−1))\Omega(d \cdot n^{1/(d-1)}). Using a recursive argument, we obtain our second structural result, showing that any degree dd polynomial ff induces a partition of FnF^n to affine subspaces of dimension Ω(n1/(d−1)!)\Omega(n^{1/(d-1)!}), such that ff is constant on each part. We extend both structural results to more than one polynomial. We further prove an analog of the first structural result to sparse polynomials (with no restriction on the degree) and to functions that are close to low degree polynomials. We also consider the algorithmic aspect of the two structural results. Our structural results have various applications, two of which are: * Dvir [CC 2012] introduced the notion of extractors for varieties, and gave explicit constructions of such extractors over large fields. We show that over any finite field, any affine extractor is also an extractor for varieties with related parameters. Our reduction also holds for dispersers, and we conclude that Shaltiel's affine disperser [FOCS 2011] is a disperser for varieties over F2F_2. * Ben-Sasson and Kopparty [SIAM J. C 2012] proved that any degree 3 affine disperser over a prime field is also an affine extractor with related parameters. Using our structural results, and based on the work of Kaufman and Lovett [FOCS 2008] and Haramaty and Shpilka [STOC 2010], we generalize this result to any constant degree

    Bi-Lipschitz Bijection between the Boolean Cube and the Hamming Ball

    Full text link
    We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even n there exists an explicit bijection f from the n-dimensional Boolean cube to the Hamming ball of equal volume embedded in (n+1)-dimensional Boolean cube, such that for all x and y it holds that distance(x,y) / 5 <= distance(f(x),f(y)) <= 4 distance(x,y) where distance(,) denotes the Hamming distance. In particular, this implies that the Hamming ball is bi-Lipschitz transitive. This result gives a strong negative answer to an open problem of Lovett and Viola [CC 2012], who raised the question in the context of sampling distributions in low-level complexity classes. The conceptual implication is that the problem of proving lower bounds in the context of sampling distributions will require some new ideas beyond the sensitivity-based structural results of Boppana [IPL 97]. We study the mapping f further and show that it (and its inverse) are computable in DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that f is "approximately local" in the sense that all but the last output bit of f are essentially determined by a single input bit

    Network Formations among Immigrants and Natives

    Get PDF
    In this paper we examine possible network formations among immigrants and natives with endogenous investment. We consider a model of a network formation where the initiator of the link bears its cost while both agents benefit from it. We present the model by considering possible interactions between immigrants and the new society in the host country: assimilation, separation, integration and marginalization. The paper highlights different aspects of immigrants’ behavior and their interaction with the members of the host country (society) and their source country (society). We found that when the stock of the immigrants in the host country increases, the immigrants' investment in the middlemen increases and the natives may bear the cost of link formation with the middlemen.assimilation and separation, social networks, network formations

    Non-Malleable Extractors - New Tools and Improved Constructions

    Get PDF
    A non-malleable extractor is a seeded extractor with a very strong guarantee - the output of a non-malleable extractor obtained using a typical seed is close to uniform even conditioned on the output obtained using any other seed. The first contribution of this paper consists of two new and improved constructions of non-malleable extractors: - We construct a non-malleable extractor with seed-length O(log(n) * log(log(n))) that works for entropy Omega(log(n)). This improves upon a recent exciting construction by Chattopadhyay, Goyal, and Li (STOC\u2716) that has seed length O(log^{2}(n)) and requires entropy Omega(log^{2}(n)). - Secondly, we construct a non-malleable extractor with optimal seed length O(log(n)) for entropy n/log^{O(1)}(n). Prior to this construction, non-malleable extractors with a logarithmic seed length, due to Li (FOCS\u2712), required entropy 0.49*n. Even non-malleable condensers with seed length O(log(n)), by Li (STOC\u2712), could only support linear entropy. We further devise several tools for enhancing a given non-malleable extractor in a black-box manner. One such tool is an algorithm that reduces the entropy requirement of a non-malleable extractor at the expense of a slightly longer seed. A second algorithm increases the output length of a non-malleable extractor from constant to linear in the entropy of the source. We also devise an algorithm that transforms a non-malleable extractor to the so-called t-non-malleable extractor for any desired t. Besides being useful building blocks for our constructions, we consider these modular tools to be of independent interest

    Spectral Expanding Expanders

    Get PDF
    Dinitz, Schapira, and Valadarsky [Dinitz et al., 2017] introduced the intriguing notion of expanding expanders - a family of expander graphs with the property that every two consecutive graphs in the family differ only on a small number of edges. Such a family allows one to add and remove vertices with only few edge updates, making them useful in dynamic settings such as for datacenter network topologies and for the design of distributed algorithms for self-healing expanders. [Dinitz et al., 2017] constructed explicit expanding-expanders based on the Bilu-Linial construction of spectral expanders [Bilu and Linial, 2006]. The construction of expanding expanders, however, ends up being of edge expanders, thus, an open problem raised by [Dinitz et al., 2017] is to construct spectral expanding expanders (SEE). In this work, we resolve this question by constructing SEE with spectral expansion which, like [Bilu and Linial, 2006], is optimal up to a poly-logarithmic factor, and the number of edge updates is optimal up to a constant. We further give a simple proof for the existence of SEE that are close to Ramanujan up to a small additive term. As in [Dinitz et al., 2017], our construction is based on interpolating between a graph and its lift. However, to establish spectral expansion, we carefully weigh the interpolated graphs, dubbed partial lifts, in a way that enables us to conduct a delicate analysis of their spectrum. In particular, at a crucial point in the analysis, we consider the eigenvectors structure of the partial lifts

    Professional vs. Non-Professional Investors: A Comparative study into the usage of Investment Tools

    Get PDF
    Investors use varies tools in the investment process.Some use technical or fundamental analysis, or both inthat process. The difference between those investmentstools have been well documented in the financialliterature. However, little have been written about thedifference investment behaviour between professionaland non-professional investors. The aim of thefollowing survey research is to examine differencesbetween professional portfolio managers to nonprofessionalinvestors in their approach towardstechnical and fundamental analysis. We used onlinesurvey in one of the leading business portals in additionto asking professional investors in a leading investmenthouse in Israel. The results show no significantdifference between professional and non-professionalinvestors in terms of how frequently they usefundamental and technical investment tools. Bothgroups of investors use more frequently fundamentaltools than technical when they make buy/sell decisions.Non- professional investors use more fundamental toolssuch as "analysts' recommendations" when they buystocks and more technical tools such as "support andresistance lines" when they sell stocks. Moreover, whileolder investors prefer fundamental tools when they buyand sell stocks, younger investors prefer to usetechnical tools over fundamentals. This importantresult might indicate that younger investor less believein a long time consuming fundamentals analysis thantheir older colleagues and they rather use a more quickmethod that does not demand an extensive effort andknowledge

    Two-Source Condensers with Low Error and Small Entropy Gap via Entropy-Resilient Functions

    Get PDF
    In their seminal work, Chattopadhyay and Zuckerman (STOC\u2716) constructed a two-source extractor with error epsilon for n-bit sources having min-entropy {polylog}(n/epsilon). Unfortunately, the construction\u27s running-time is {poly}(n/epsilon), which means that with polynomial-time constructions, only polynomially-small errors are possible. Our main result is a {poly}(n,log(1/epsilon))-time computable two-source condenser. For any k >= {polylog}(n/epsilon), our condenser transforms two independent (n,k)-sources to a distribution over m = k-O(log(1/epsilon)) bits that is epsilon-close to having min-entropy m - o(log(1/epsilon)). Hence, achieving entropy gap of o(log(1/epsilon)). The bottleneck for obtaining low error in recent constructions of two-source extractors lies in the use of resilient functions. Informally, this is a function that receives input bits from r players with the property that the function\u27s output has small bias even if a bounded number of corrupted players feed adversarial inputs after seeing the inputs of the other players. The drawback of using resilient functions is that the error cannot be smaller than ln r/r. This, in return, forces the running time of the construction to be polynomial in 1/epsilon. A key component in our construction is a variant of resilient functions which we call entropy-resilient functions. This variant can be seen as playing the above game for several rounds, each round outputting one bit. The goal of the corrupted players is to reduce, with as high probability as they can, the min-entropy accumulated throughout the rounds. We show that while the bias decreases only polynomially with the number of players in a one-round game, their success probability decreases exponentially in the entropy gap they are attempting to incur in a repeated game
    • 

    corecore