4,071 research outputs found
Asset Forfeiture and Attorneys’ Fees: The Zero-Sum Game
The history of asset forfeiture law spans almost as long as the history of the United States. However, in the last thirty years, the number of crimes for which asset forfeiture can be levied has grown exponentially both on the federal and state levels. As a result, a growing number of defendants face asset forfeiture. When these criminal defendants seek legal representation, they place their attorneys in a difficult legal and ethical position. Asset forfeiture has developed in such a way that the criminal defense attorney cannot provide her client with zealous advocacy if the attorney seeks to retain her fees. Additionally, the law is designed to prevent these attorneys from withdrawing their representation once they learn that the funds being used to pay their fees are tainted. This Note examines these, and other, ethical dilemmas that arise for criminal defense attorneys whose clients may be subject to asset forfeiture. Ultimately, this Note proposes a statutory fix to resolve these ethical issues to ensure that lawyers retain their hard-earned fees and clients receive zealous advocates
Paper Session I-A - Human Factors Issues for Interstellar Spacecraft
The prospect of interstellar travel challenges many of the common assumptions about long duration manned space/light, raising significant issues about how human factors requirements may change for the multigenerational space flight required for interstellar travel. Mission duration is the driving cause for most human factors issues involving isolation, confinement and exposure to weightlessness and radiation. The notion of a self-sustaining, interstellar spacecraft derives largely from the scenario of travelling O\u27Neillian space settlements. This article reviews this scenario in light of current developments in space human factors research and technology. The discussion concerns mission duration, spacecraft and crew size, human accommodations and requirements for habitability and safety. The human factors issues that emerge include habitability, human machine interfaces, crew training and selection, sweat equity and population growth
Recommended from our members
Convex Lens-Induced Confinement for Imaging Single Molecules
Fluorescence imaging is used to study the dynamics of a wide variety of single molecules in solution or attached to a surface. Two key challenges in this pursuit are (1) to image immobilized single molecules in the presence of a high level of fluorescent background and (2) to image freely diffusing single molecules for long times. Strategies that perform well by one measure often perform poorly by the other. Here, we present a simple modification to a wide-field fluorescence microscope that addresses both challenges and dramatically improves single-molecule imaging. The technique of convex lens-induced confinement (CLIC) restricts molecules to a wedge-shaped gap of nanoscale depth, formed between a plano-convex lens and a planar coverslip. The shallow depth of the imaging volume leads to 20-fold greater rejection of background fluorescence than is achieved with total internal reflection fluorescence (TIRF) imaging. Elimination of out-of-plane diffusion leads to an approximately 10 000-fold longer diffusion-limited observation time per molecule than is achieved with confocal fluorescence correlation spectroscopy. The CLIC system also provides a new means to determine molecular size. The CLIC system does not require any nanofabrication, nor any custom optics, electronics, or computer control.Chemistry and Chemical BiologyPhysic
Noncovariant gauge fixing in the quantum Dirac field theory of atoms and molecules
Starting from the Weyl gauge formulation of quantum electrodynamics (QED),
the formalism of quantum-mechanical gauge fixing is extended using techniques
from nonrelativistic QED. This involves expressing the redundant gauge degrees
of freedom through an arbitrary functional of the gauge-invariant transverse
degrees of freedom. Particular choices of functional can be made to yield the
Coulomb gauge and Poincar\'{e} gauge representations. The Hamiltonian we derive
therefore serves as a good starting point for the description of atoms and
molecules by means of a relativistic Dirac field. We discuss important
implications for the ontology of noncovariant canonical QED due to the gauge
freedom that remains present in our formulation.Comment: 8 pages, 0 figure
Complex Dynamics and Synchronization of Delayed-Feedback Nonlinear Oscillators
We describe a flexible and modular delayed-feedback nonlinear oscillator that
is capable of generating a wide range of dynamical behaviours, from periodic
oscillations to high-dimensional chaos. The oscillator uses electrooptic
modulation and fibre-optic transmission, with feedback and filtering
implemented through real-time digital-signal processing. We consider two such
oscillators that are coupled to one another, and we identify the conditions
under which they will synchronize. By examining the rates of divergence or
convergence between two coupled oscillators, we quantify the maximum Lyapunov
exponents or transverse Lyapunov exponents of the system, and we present an
experimental method to determine these rates that does not require a
mathematical model of the system. Finally, we demonstrate a new adaptive
control method that keeps two oscillators synchronized even when the coupling
between them is changing unpredictably.Comment: 24 pages, 13 figures. To appear in Phil. Trans. R. Soc. A (special
theme issue to accompany 2009 International Workshop on Delayed Complex
Systems
Genetic recombination is targeted towards gene promoter regions in dogs
The identification of the H3K4 trimethylase, PRDM9, as the gene responsible
for recombination hotspot localization has provided considerable insight into
the mechanisms by which recombination is initiated in mammals. However,
uniquely amongst mammals, canids appear to lack a functional version of PRDM9
and may therefore provide a model for understanding recombination that occurs
in the absence of PRDM9, and thus how PRDM9 functions to shape the
recombination landscape. We have constructed a fine-scale genetic map from
patterns of linkage disequilibrium assessed using high-throughput sequence data
from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties
of recombination appear similar to other mammalian species, our fine-scale
estimates indicate that canine highly elevated recombination rates are observed
in the vicinity of CpG rich regions including gene promoter regions, but show
little association with H3K4 trimethylation marks identified in spermatocytes.
By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show
that biased gene conversion is a plausible mechanism by which the high CpG
content of the dog genome could have occurred.Comment: Updated version, with significant revision
Tracing the Orphan Stream to 55 kpc with RR Lyrae Stars
We report positions, velocities and metallicities of 50 ab-type RR Lyrae
(RRab) stars observed in the vicinity of the Orphan stellar stream. Using about
30 RRab stars classified as being likely members of the Orphan stream, we study
the metallicity and the spatial extent of the stream. We find that RRab stars
in the Orphan stream have a wide range of metallicities, from -1.5 dex to -2.7
dex. The average metallicity of the stream is -2.1 dex, identical to the value
obtained by Newberg et al. (2010) using blue horizontal branch stars. We find
that the most distant parts of the stream (40-50 kpc from the Sun) are about
0.3 dex more metal-poor than the closer parts (within ~30 kpc), suggesting a
possible metallicity gradient along the stream's length. We have extended the
previous studies and have mapped the stream up to 55 kpc from the Sun. Even
after a careful search, we did not identify any more distant RRab stars that
could plausibly be members of the Orphan stream. If confirmed with other
tracers, this result would indicate a detection of the end of the leading arm
of the stream. We have compared the distances of Orphan stream RRab stars with
the best-fit orbits obtained by Newberg et al. (2010). We find that model 6 of
Newberg et al. (2010) cannot explain the distances of the most remote Orphan
stream RRab stars, and conclude that the best fit to distances of Orphan stream
RRab stars and to the local circular velocity is provided by potentials where
the total mass of the Galaxy within 60 kpc is M_{60}~2.7x10^{11} Msun, or about
60% of the mass found by previous studies. More extensive modelling that would
consider non-spherical potentials and the possibility of misalignment between
the stream and the orbit, is highly encouraged.Comment: Submitted to ApJ, 15 pages in emulateapj format, three tables in
machine-readable format (download "Source" from "Other formats"
Bayesian Prediction-Powered Inference
Prediction-powered inference (PPI) is a method that improves statistical
estimates based on limited human-labeled data. Specifically, PPI methods
provide tighter confidence intervals by combining small amounts of
human-labeled data with larger amounts of data labeled by a reasonably
accurate, but potentially biased, automatic system. We propose a framework for
PPI based on Bayesian inference that allows researchers to develop new
task-appropriate PPI methods easily. Exploiting the ease with which we can
design new metrics, we propose improved PPI methods for several importantcases,
such as autoraters that give discrete responses (e.g., prompted LLM ``judges'')
and autoraters with scores that have a non-linear relationship to human scores
- …