973 research outputs found
Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb
The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets
along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon
guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit
receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined
by the location of OSNs within the OE but also relies on axon guidance cues
Virtual reality as a new approach to assess cognitive decline in the elderly
Brain aging is a natural process that leads to a change in cognitive functions. Mild Cognitive Impairment (MCI) is a condition in which a person has cognitive functions that are below normal for his age. However, these deficits are not pronounced enough to confirm for the diagnosis of dementia. It is therefore important to develop new ways to assess cognitive functions in the elderly. This would indeed lead to a better identification of the cognitive losses that are related to normal or pathological aging. The objective of this study was to investigate the relevance of virtual reality as a new evaluation approach in psychology. To do this, 10 elderly people with Mild Cognitive Impairment, and 20 elderly people without cognitive problems, were compared using tests of prospective memory that were presented in a traditional way and in virtual reality. The diagnosis of MCI was made using the Montreal Cognitive Assessment (MoCA). Significant differences between the two groups were noted in virtual reality. Nevertheless, no difference was observed between the two groups with the traditional task. A significant positive correlation between the virtual reality task and the MoCA, but not between the traditional task and the MoCA, was observed. An evaluative approach based on virtual reality seems more sensitive to cognitive impairment associated with aging than an approach based on traditional neuropsychological tests.
Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit
The bright M dwarf K2-18 at 34 pc is known to host a transiting
super-Earth-sized planet orbiting within the star's habitable zone; K2-18b.
Given the superlative nature of this system for studying an exoplanetary
atmosphere receiving similar levels of insolation as the Earth, we aim to
characterize the planet's mass which is required to interpret atmospheric
properties and infer the planet's bulk composition. We obtain precision radial
velocity measurements with the HARPS spectrograph and couple those measurements
with the K2 photometry to jointly model the observed radial velocity variation
with planetary signals and a radial velocity jitter model based on Gaussian
process regression. We measure the mass of K2-18b to be
M with a bulk density of g/cm which may correspond
to a predominantly rocky planet with a significant gaseous envelope or an ocean
planet with a water mass fraction %. We also find strong evidence
for a second, warm super-Earth K2-18c at days with a semi-major axis
2.4 times smaller than the transiting K2-18b. After re-analyzing the available
light curves of K2-18 we conclude that K2-18c is not detected in transit and
therefore likely has an orbit that is non-coplanar with K2-18b. A suite of
dynamical integrations with varying simulated orbital eccentricities of the two
planets are used to further constrain each planet's eccentricity posterior from
which we measure and at 99% confidence. The discovery
of the inner planet K2-18c further emphasizes the prevalence of multi-planet
systems around M dwarfs. The characterization of the density of K2-18b reveals
that the planet likely has a thick gaseous envelope which along with its
proximity to the Solar system makes the K2-18 planetary system an interesting
target for the atmospheric study of an exoplanet receiving Earth-like
insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in
Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom
Development of a toolkit for a mentoring program
The mentoring kit for a mentoring program provides the
mentors with the necessary resources and tools to help to
mentees and teams to understand, apply and integrate their
strengths in their respective roles. The tools of the kit offer a
working model with the mentee to develop an effective strategy
that improves his/her performance through development based
on strengths. One of the most effective methods for managing
and developing talent within students are mentoring programs.
These programs provide a vehicle in which knowledge and
wisdom is shared while creating an environment for learning
and growth. Novice mentors could benefit from a toolkit to help
structure effective mentoring programs. This article describes
such a toolkit to provide mentors with the necessary resources
and tools to help mentees and teams to understand, apply and
integrate their strengths in their respective roles. The objectives
of this toolkit are: 1. Deliver models and structures so that the
mentee has the ability to: - Develop transformational, theoretical
and experiential learning processes. - Develop, evaluate and
optimize your resources to function with greater creativity,
prominence, leadership and proactivity. 2. Stimulate the
development of skills that provide innovative perspectives. 3.
Learn to apply the tools and skills acquired in the educational
field to: - Understand and diagnose situations in context. -
Develop intervention plans with his/her mentor adjusted to the
needs and expectations of themselves. - Generate spaces for the
identification of barriers and conflicts in his/her processes. -
Stimulate actions to overcome challenges or opportunities. â
Effective accompaniment of the mentees to reach their goals.
Additionally, the tools included in the kit offer a working model
for the mentee to develop an effective strategy that improves
his/her performance through development based on strengths.
This article presents the importance of the use of mentoring
tools, under the guidelines of the mentoring toolkit design. This
article presents the importance of the use of mentoring tools,
under the guidelines of the mentoring toolkit design. This paper
reflects simple tools that can be used in a systematic way so that
in the mentoring process the participant can perform the most
difficult task of all, that of investigating themselves and at the
same time the mentor can count on valuable data to be able to
facilitate the work. Future research will focus on the evaluation
of the toolkit
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography
The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream
Observations show significant H\alpha-emissions in the Galactic halo near the
edges of cold gas clouds of the Magellanic Stream. The source for the
ionization of the cold gas is still a widely open question. In our paper we
discuss the critical velocity effect as a possible explanation for the observed
H\alpha-emission. The critical velocity effect can yield a fast ionization of
cold gas if this neutral gas passes through a magnetized plasma under suitable
conditions. We show that for parameters that are typical for the Magellanic
Stream the critical velocity effect has to be considered as a possible
ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa
Nanoscale structuring of tungsten tip yields most coherent electron point-source
This report demonstrates the most spatially-coherent electron source ever
reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a
virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5
V. The nanotips under study were crafted using a spatially-confined,
field-assisted nitrogen etch which removes material from the periphery of the
tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio
source. The coherence properties are deduced from holographic measurements in a
low-energy electron point source microscope with a carbon nanotube bundle as
sample. Using the virtual source size and emission current the brightness
normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2
The Tyrosine Kinase Csk Dimerizes through Its SH3 Domain
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity
Dynamic splinting for knee flexion contracture following total knee arthroplasty: a case report
Total Knee Arthroplasty operations are increasing in frequency, and knee flexion contracture is a common pathology, both pre-existing and post-operative. A 61-year-old male presented with knee flexion contracture following a total knee arthroplasty. Physical therapy alone did not fully reduce the contracture and dynamic splinting was then prescribed for daily low-load, prolonged-duration stretch. After 28 physical therapy sessions, the active range of motion improved from -20° to -12° (stiff knee still lacking full extension), and after eight additional weeks with nightly wear of dynamic splint, the patient regained full knee extension, (active extension improved from -12° to 0°)
Classical Fields Near Thermal Equilibrium
We discuss the classical limit for the long-distance (``soft'') modes of a
quantum field when the hard modes of the field are in thermal equilibrium. We
address the question of the correct semiclassical dynamics when a momentum
cut-off is introduced. Higher order contributions leads to a stochastic
interpretation for the effective action in analogy to Quantum Brownian Motion,
resulting in dissipation and decoherence for the evolution of the soft modes.
Particular emphasis is put on the understanding of dissipation. Our discussion
focuses mostly on scalar fields, but we make some remarks on the extension to
gauge theories.Comment: REVTeX, 6 figure
- âŠ