754 research outputs found
Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms
We present a novel method for reducing the inhomogeneous frequency broadening
in the hyperfine splitting of the ground state of optically trapped atoms. This
reduction is achieved by the addition of a weak light field, spatially
mode-matched with the trapping field and whose frequency is tuned in-between
the two hyperfine levels. We experimentally demonstrate the new scheme with Rb
85 atoms, and report a 50-fold narrowing of the rf spectrum
Density perturbations in the brane-world
In Randall-Sundrum-type brane-world cosmologies, density perturbations
generate Weyl curvature in the bulk, which in turn backreacts on the brane via
stress-energy perturbations. On large scales, the perturbation equations
contain a closed system on the brane, which may be solved without solving for
the bulk perturbations. Bulk effects produce a non-adiabatic mode, even when
the matter perturbations are adiabatic, and alter the background dynamics. As a
consequence, the standard evolution of large-scale fluctuations in general
relativity is modified. The metric perturbation on large-scales is not constant
during high-energy inflation. It is constant during the radiation era, except
at most during the very beginning, if the energy is high enough.Comment: Additional arguments and minor corrections; version accepted by Phys.
Rev.
Dust in the bright supernova remnant N49 in the LMC
We investigate the dust associated with the supernova remnant (SNR) N49 in
the Large Magellanic Cloud (LMC) as observed with the Herschel Space
Observatory. N49 is unusually bright because of an interaction with a molecular
cloud along its eastern edge. We have used PACS and SPIRE to measure the far IR
flux densities of the entire SNR and of a bright region on the eastern edge of
the SNR where the SNR shock is encountering the molecular cloud. Using these
fluxes supplemented with archival data at shorter wavelengths, we estimate the
dust mass associated with N49 to be about 10 Msun. The bulk of the dust in our
simple two-component model has a temperature of 20-30 K, similar to that of
nearby molecular clouds. Unfortunately, as a result of the limited angular
resolution of Herschel at the wavelengths sampled with SPIRE, the uncertainties
are fairly large. Assuming this estimate of the dust mass associated with the
SNR is approximately correct, it is probable that most of the dust in the SNR
arises from regions where the shock speed is too low to produce significant
X-ray emission. The total amount of warm 50-60 K dust is ~0.1 or 0.4 Msun,
depending on whether the dust is modeled in terms of carbonaceous or silicate
grains. This provides a firm lower limit to the amount of shock heated dust in
N49.Comment: accepted by the Astronomy & Astrophysics Lette
Modulated Inflation
We have studied modulated inflation that generates curvature perturbation
from light-field fluctuation. As discussed in previous works, even if the
fluctuation of the inflaton itself does not generate the curvature perturbation
at the horizon crossing, fluctuation of a light field may induce fluctuation
for the end-line of inflation and this may lead to generation of cosmological
perturbation ``at the end of the inflation''. Our scenario is different from
those that are based on the fluctuations of the boundary of the inflaton
trajectory, as clearly explained in this paper by using the
formalism. In this paper, we will consider the perturbation of the inflaton
velocity that can be induced by a light field other than the inflaton. We also
explain the crucial difference from the standard multi-field inflation model.
We show concrete examples of the modulated inflation scenario in which
non-gaussianity can be generated. We also discuss the running of the
non-gaussianity parameter.Comment: 17pages, k^2/a^2 is included, accepted for publication in PL
Anisotropy dissipation in brane-world inflation
We examine the behavior of an anisotropic brane-world in the presence of
inflationary scalar fields. We show that, contrary to naive expectations, a
large anisotropy does not adversely affect inflation. On the contrary, a large
initial anisotropy introduces more damping into the scalar field equation of
motion, resulting in greater inflation. The rapid decay of anisotropy in the
brane-world significantly increases the class of initial conditions from which
the observed universe could have originated. This generalizes a similar result
in general relativity. A unique feature of Bianchi I brane-world cosmology
appears to be that for scalar fields with a large kinetic term the initial
expansion of the universe is quasi-isotropic. The universe grows more
anisotropic during an intermediate transient regime until anisotropy finally
disappears during inflationary expansion.Comment: 6 pages, 5 figures; minor typo corrected in Eq. (16); matches version
to appear in Phy Rev
Empirical Potential Function for Simplified Protein Models: Combining Contact and Local Sequence-Structure Descriptors
An effective potential function is critical for protein structure prediction
and folding simulation. Simplified protein models such as those requiring only
or backbone atoms are attractive because they enable efficient
search of the conformational space. We show residue specific reduced discrete
state models can represent the backbone conformations of proteins with small
RMSD values. However, no potential functions exist that are designed for such
simplified protein models. In this study, we develop optimal potential
functions by combining contact interaction descriptors and local
sequence-structure descriptors. The form of the potential function is a
weighted linear sum of all descriptors, and the optimal weight coefficients are
obtained through optimization using both native and decoy structures. The
performance of the potential function in test of discriminating native protein
structures from decoys is evaluated using several benchmark decoy sets. Our
potential function requiring only backbone atoms or atoms have
comparable or better performance than several residue-based potential functions
that require additional coordinates of side chain centers or coordinates of all
side chain atoms. By reducing the residue alphabets down to size 5 for local
structure-sequence relationship, the performance of the potential function can
be further improved. Our results also suggest that local sequence-structure
correlation may play important role in reducing the entropic cost of protein
folding.Comment: 20 pages, 5 figures, 4 tables. In press, Protein
Large-scale cosmological perturbations on the brane
In brane-world cosmologies of Randall-Sundrum type, we show that evolution of
large-scale curvature perturbations may be determined on the brane, without
solving the bulk perturbation equations. The influence of the bulk
gravitational field on the brane is felt through a projected Weyl tensor which
behaves effectively like an imperfect radiation fluid with anisotropic stress.
We define curvature perturbations on uniform density surfaces for both the
matter and Weyl fluids, and show that their evolution on large scales follows
directly from the energy conservation equations for each fluid. The total
curvature perturbation is not necessarily constant for adiabatic matter
perturbations, but can change due to the Weyl entropy perturbation. To relate
this curvature perturbation to the longitudinal gauge metric potentials
requires knowledge of the Weyl anisotropic stress which is not determined by
the equations on the brane. We discuss the implications for large-angle
anisotropies on the cosmic microwave background sky.Comment: 13 pages, latex with revtex, no figure
Consistency equations in Randall-Sundrum cosmology: a test for braneworld inflation
In the context of an inflationary Randall-Sundrum Type II braneworld (RS2) we
calculate spectral indices and amplitudes of cosmological scalar and tensor
perturbations, up to second order in slow-roll parameters. Under very simple
assumptions, extrapolating next-order formulae from first-order calculations in
the case of a de Sitter brane, we see that the degeneracy between standard and
braneworld lowest-order consistency equations is broken, thus giving different
signatures of early-universe inflationary expansion. Using the latest results
from WMAP for estimates of cosmological observables, it is shown that future
data and missions can in principle discriminate between standard and braneworld
scenarios.Comment: 13 pages; v3: supersedes the published version, corrected misprint
Beef cows and calves, 1979: a summary of research
Response of fall-born calves to monensin on orchardgrass / alfalfa or tall fescue / alfalfa pastures / F. M. Byers, C. F. Parker, and R. W. Van Keuren -- Effects of forage system and breed type on the performance of fall calving cows / C. F. Parker and R. W. Van Keuren -- Forage management for beef production / R. W. Van Keuren, C. F. Parker, and E. W. Klosterman -- Breeding and management systems to optimize beef breeding herd productivity / E. W. Klosterman, R. W. Van Keuren, C. F. Parker, and F. M. Byers -- Voluntary feed intake of mature cows as related to breed type, condition, and forage quality / E. W. Klosterman, F. M. Byers, and C. F. Parker -- Weight and condition changes of pregnant beef cows wintered on corn stover stacks / G. R. Wilson, J. G. Gordon, J. H. Cline, K. M. Irvin, and E. W. Klosterman -- Estrus synchronization of beef cows and heifers with prostaglandin F2a under field conditions / G. R. Wilson, T. L. Benecke, K. M. Irvin, T. M. Ludwick, C. E. Marshall, and R. A. Wallac
Aspects of Two-Photon Physics at Linear e+e- Colliders
We discuss various reactions at future e+e- and gamma-gamma colliders
involving real (beamstrahlung or backscattered laser) or quasi--real
(bremsstrahlung) photons in the initial state and hadrons in the final state.
The production of two central jets with large pT is described in some detail;
we give distributions for the rapidity and pT of the jets as well as the
di--jet invariant mass, and discuss the relative importance of various initial
state configurations and the uncertainties in our predictions. We also present
results for `mono--jet' production where one jet goes down a beam pipe, for the
production of charm, bottom and top quarks, and for single production of W and
Z bosons. Where appropriate, the two--photon processes are compared with
annihilation reactions leading to similar final states. We also argue that the
behaviour of the total inelastic gamma-gamma cross section at high energies
will probably have little impact on the severity of background problems caused
by soft and semi--hard (`minijet') two--photon reactions. We find very large
differences in cross sections for all two--photon processes between existing
designs for future e+e- colliders, due to the different beamstrahlung spectra;
in particular, both designs with >1 events per bunch crossing exist.Comment: 51 pages, 13 figures(not included
- …