26 research outputs found

    Staphylococcus aureus enterotoxin B regulates prostaglandin E-2 synthesis, growth, and migration in nasal tissue fibroblasts

    Get PDF
    Background. Superantigens and eicosanoids are important amplifiers and regulators of inflammation in airway diseases. We therefore studied the possible influence of Staphylococcus aureus enterotoxin B ( SEB) on the cyclooxygenase ( COX) pathway and basic functions of airway structural cells. Methods. Fibroblasts were isolated from nasal inferior turbinate tissue and cultured in the presence of different concentrations of SEB. Preincubation with interferon ( IFN)-gamma was performed to induce expression of major histocompatibility complex ( MHC) class II receptors. Prostaglandin E2 ( PGE(2)) production was assayed by enzyme-linked immunosorbent assay, and levels of COX-2 and prostanoid E receptors 1-4 ( EP1-4) were assayed by real-time polymerase chain reaction. Migration and growth tests were performed, and SEB was localized within the cells by confocal microscopy. Results. Stimulation with IFN-gamma and SEB significantly down-regulated PGE2, COX-2, and EP2 expression but not EP1, EP3, or EP4 expression. The enterotoxin blocked cell growth but increased the fibroblast migration rate. SEB was localized within the cell in the presence and absence of MHC-II, suggesting that mechanisms other than conventional binding may allow the enterotoxin to enter the cell. Conclusions. These findings may have major implications for our understanding of the role played by bacterial superantigens in regulating the inflammatory and remodeling mechanisms of upper airway diseases and hence may help elucidate the pathophysiology of these diseases

    Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators

    Get PDF
    Animals using toxic peptides and proteins for predation or defense typically depend on specialized morphological structures, like fangs, spines, or a stinger, for effective intoxication. Here we show that amphibian poisons instead incorporate their own molecular system for toxin delivery to attacking predators. Skin-secreted peptides, generally considered part of the amphibian immune system, permeabilize oral epithelial tissue and enable fast access of cosecreted toxins to the predator's bloodstream and organs. This absorption-enhancing system exists in at least three distantly related frog lineages and is likely to be a widespread adaptation, determining the outcome of predator-prey encounters in hundreds of species

    Therapeutic effects of dietary intervention on neuroinflammation and brain metabolism in a rat model of photothrombotic stroke

    Get PDF
    INTRODUCTION: A possible target for stroke management is modulation of neuroinflammation. Evidence suggests that food components may exert anti-inflammatory properties and thus may reduce stroke-induced brain damage. AIM: To investigate the efficacy of a diet, containing anti-inflammatory ingredients, as treatment for focal ischemic brain damage induced by photothrombotic stroke in the somatosensory cortex of rats. RESULTS: Brain lesions were surrounded by strong astrogliosis on both day 7 and day 21 after stroke and were accompanied by a trend toward globally decreased glucose metabolism on day 7. The investigational diet applied 2 weeks before the ischemia did not affect astrocyte activation on day 7, but reduced it at day 21. The investigational diet applied immediately after the ischemia, increased astrocyte activation on day 7 and completely reversed this effect on day 21. Moreover, postischemic intervention increased glucose metabolism in somatosensory cortex ipsilateral to the lesion on day 7. CONCLUSION: This study reveals potentially beneficial effects of a diet containing elevated amounts of anti-inflammatory nutrients on the recovery from ischemic brain damage. Therefore, dietary intervention can be considered as an adjuvant therapy for recovery from this brain pathology

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
    corecore