62 research outputs found

    Vector Multiplicative Error Models: Representation and Inference

    Get PDF
    The Multiplicative Error Model introduced by Engle (2002) for positive valued processes is specified as the product of a (conditionally autoregressive) scale factor and an innovation process with positive support. In this paper we propose a multi-variate extension of such a model, by taking into consideration the possibility that the vector innovation process be contemporaneously correlated. The estimation procedure is hindered by the lack of probability density functions for multivariate positive valued random variables. We suggest the use of copulafunctions and of estimating equations to jointly estimate the parameters of the scale factors and of the correlations of the innovation processes. Empirical applications on volatility indicators are used to illustrate the gains over the equation by equation procedure.

    Semiparametric vector MEM

    Get PDF
    In financial time series analysis we encounter several instances of non–negative valued processes (volumes, trades, durations, realized volatility, daily range, and so on) which exhibit clustering and can be modeled as the product of a vector of conditionally autoregressive scale factors and a multivariate iid innovation process (vector Multiplicative Error Model). Two novel points are introduced in this paper relative to previous suggestions: a more general specification which sets this vector MEM apart from an equation by equation specification; and the adoption of a GMM-based approach which bypasses the complicated issue of specifying a general multivariate non–negative valued innovation process. A vMEM for volumes, number of trades and realized volatility reveals empirical support for a dynamically interdependent pattern of relationships among the variables on a number of NYSE stocks

    Modeling and evaluating conditional quantile dynamics in VaR forecasts

    Full text link
    We focus on the time-varying modeling of VaR at a given coverage τ\tau, assessing whether the quantiles of the distribution of the returns standardized by their conditional means and standard deviations exhibit predictable dynamics. Models are evaluated via simulation, determining the merits of the asymmetric Mean Absolute Deviation as a loss function to rank forecast performances. The empirical application on the Fama-French 25 value-weighted portfolios with a moving forecast window shows substantial improvements in forecasting conditional quantiles by keeping the predicted quantile unchanged unless the empirical frequency of violations falls outside a data-driven interval around τ\tau.Comment: 37 pages, 5 figures, 8 table

    Vector Multiplicative Error Models: Representation and Inference

    Get PDF
    The Multiplicative Error Model introduced by Engle (2002) for positive valued processes is specified as the product of a (conditionally autoregressive) scale factor and an innovation process with positive support. In this paper we propose a multivariate extension of such a model, by taking into consideration the possibility that the vector innovation process be contemporaneously correlated. The estimation procedure is hindered by the lack of probability density functions for multivariate positive valued random variables. We suggest the use of copula functions and of estimating equations to jointly estimate the parameters of the scale factors and of the correlations of the innovation processes. Empirical applications on volatility indicators are used to illustrate the gains over the equation by equation procedure

    Vector Multiplicative Error Models:Representation and Inference

    Get PDF
    The Multiplicative Error Model introduced by Engle (2002) for positive valued processes is specified as the product of a (conditionally autoregressive) scale factor and an innovation process with positive support. In this paper we propose a multivariate extension of such a model, by taking into consideration the possibility that the vector innovation process be on temporaneously correlated. The estimation procedure is hindered by the lack of probability density functions for multivariate positive valued random variables. We suggest the use of copula functions and of estimating equations to jointly estimate the parameters of the scale factors and of the correlations of the innovation processes. Empirical applications on volatility indicators are used to illustrate the gains over the equation by equation procedure

    The dirty side of money: How extrinsic incentives jeopardize knowledge sharing

    Get PDF
    Cooperation and knowledge sharing among employees often lead to increased innovation. In this study, we explore the influence of a flatter organizational structure implementing lateral integrative mechanisms and the individuals\u2019 intrinsic motivation on employees\u2019 participation in exchanging their ideas and know-how with others in the organization. We then relate these two aspects to the provision of extrinsic rewards (e.g., higher salary, bonuses, etc.) for knowledge sharing. The empirical analysis run on a sample of 754 employees from 23 international manufacturing firms shows that extrinsic incentives may significantly hamper the positive effect of both lateral integrative mechanisms and intrinsic motivation on knowledge sharing, thus resulting in a detrimental factor for employees\u2019 social relationships and helpful behaviors. We thus provide evidence of the importance of appropriately designing an incentive plan that fosters knowledge exchange, yielding creativity and firms\u2019 superior performance
    • …
    corecore