302 research outputs found
Effective macroscopic dynamics of stochastic partial differential equations in perforated domains
An effective macroscopic model for a stochastic microscopic system is
derived. The original microscopic system is modeled by a stochastic partial
differential equation defined on a domain perforated with small holes or
heterogeneities. The homogenized effective model is still a stochastic partial
differential equation but defined on a unified domain without holes. The
solutions of the microscopic model is shown to converge to those of the
effective macroscopic model in probability distribution, as the size of holes
diminishes to zero. Moreover, the long time effectivity of the macroscopic
system in the sense of \emph{convergence in probability distribution}, and the
effectivity of the macroscopic system in the sense of \emph{convergence in
energy} are also proved
Interior error estimate for periodic homogenization
In a previous article about the homogenization of the classical problem of
diff usion in a bounded domain with su ciently smooth boundary we proved that
the error is of order . Now, for an open set with su ciently
smooth boundary and homogeneous Dirichlet or Neuman limits conditions
we show that in any open set strongly included in the error is of order
. If the open set is of polygonal (n=2) or
polyhedral (n=3) boundary we also give the global and interrior error
estimates
The periodic unfolding method for perforated domains and Neumann sieve models
AbstractThe periodic unfolding method, introduced in [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 99–104], was developed to study the limit behavior of periodic problems depending on a small parameter ε. The same philosophy applies to a range of periodic problems with small parameters and with a specific period (as well as to almost any combinations thereof). One example is the so-called Neumann sieve.In this work, we present these extensions and show how they apply to known results and allow for generalizations (some in dimension N⩾3 only). The case of the Neumann sieve is treated in details. This approach is significantly simpler than the original ones, both in spirit and in practice
Asymptotic homogenisation in strength and fatigue durability analysis of composites
This is the post-print version of the Article. Copyright @ 2003 Kluwer Academic Publishers.Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength as the structure period tends to zero is proved and its limiting value is estimated.This work was supported under the research grant GR/M24592 from the Engineering and Physical Sciences Research Council, UK
Branching Structures in Elastic Shape Optimization
Fine scale elastic structures are widespread in nature, for instances in
plants or bones, whenever stiffness and low weight are required. These patterns
frequently refine towards a Dirichlet boundary to ensure an effective load
transfer. The paper discusses the optimization of such supporting structures in
a specific class of domain patterns in 2D, which composes of periodic and
branching period transitions on subdomain facets. These investigations can be
considered as a case study to display examples of optimal branching domain
patterns.
In explicit, a rectangular domain is decomposed into rectangular subdomains,
which share facets with neighbouring subdomains or with facets which split on
one side into equally sized facets of two different subdomains. On each
subdomain one considers an elastic material phase with stiff elasticity
coefficients and an approximate void phase with orders of magnitude softer
material. For given load on the outer domain boundary, which is distributed on
a prescribed fine scale pattern representing the contact area of the shape, the
interior elastic phase is optimized with respect to the compliance cost. The
elastic stress is supposed to be continuous on the domain and a stress based
finite volume discretization is used for the optimization. If in one direction
equally sized subdomains with equal adjacent subdomain topology line up, these
subdomains are consider as equal copies including the enforced boundary
conditions for the stress and form a locally periodic substructure.
An alternating descent algorithm is employed for a discrete characteristic
function describing the stiff elastic subset on the subdomains and the solution
of the elastic state equation. Numerical experiments are shown for compression
and shear load on the boundary of a quadratic domain.Comment: 13 pages, 6 figure
The Navier-Stokes-alpha model of fluid turbulence
We review the properties of the nonlinearly dispersive Navier-Stokes-alpha
(NS-alpha) model of incompressible fluid turbulence -- also called the viscous
Camassa-Holm equations and the LANS equations in the literature. We first
re-derive the NS-alpha model by filtering the velocity of the fluid loop in
Kelvin's circulation theorem for the Navier-Stokes equations. Then we show that
this filtering causes the wavenumber spectrum of the translational kinetic
energy for the NS-alpha model to roll off as k^{-3} for k \alpha > 1 in three
dimensions, instead of continuing along the slower Kolmogorov scaling law,
k^{-5/3}, that it follows for k \alpha < 1. This rolloff at higher wavenumbers
shortens the inertial range for the NS-alpha model and thereby makes it more
computable. We also explain how the NS-alpha model is related to large eddy
simulation (LES) turbulence modeling and to the stress tensor for second-grade
fluids. We close by surveying recent results in the literature for the NS-alpha
model and its inviscid limit (the Euler-alpha model).Comment: 22 pages, 1 figure. Dedicated to V. E. Zakharov on the occasion of
his 60th birthday. To appear in Physica
Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions
A microscopic heterogeneous system under random influence is considered. The
randomness enters the system at physical boundary of small scale obstacles as
well as at the interior of the physical medium. This system is modeled by a
stochastic partial differential equation defined on a domain perforated with
small holes (obstacles or heterogeneities), together with random dynamical
boundary conditions on the boundaries of these small holes.
A homogenized macroscopic model for this microscopic heterogeneous stochastic
system is derived. This homogenized effective model is a new stochastic partial
differential equation defined on a unified domain without small holes, with
static boundary condition only. In fact, the random dynamical boundary
conditions are homogenized out, but the impact of random forces on the small
holes' boundaries is quantified as an extra stochastic term in the homogenized
stochastic partial differential equation. Moreover, the validity of the
homogenized model is justified by showing that the solutions of the microscopic
model converge to those of the effective macroscopic model in probability
distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
- …