3 research outputs found
Synthesis and Characterization of New Lithium and Boron Based Metal Organic Frameworks with NLO Properties for Application in Neutron Capture Therapy
In this work, we synthetized and characterized new crystalline materials with theranostic properties, i.e., they can be used both as bio-sensors and for "drug delivery". The two solid crystalline compounds studied are Metal Organic Frameworks and have formulas Li[(C6H12O6)2B]\ub72H2O and Li[(C4H2O6)2B]\ub75.5H2O. They can be synthetized both with natural isotopes of Li and B or with 6Li and 10B isotopes, that can be explored for Neutron Capture Therapy (NCT) for anti-cancer treatment. The presence of chiral organic molecules, such as mannitol and tartaric acid, provides the NLO property to the crystals and thus their capability to generate the Second Harmonic, which is useful for applications as bio-sensors. The two compounds were characterized with X-ray Diffraction and the Second Harmonic Generation (SHG) responses were estimated by theoretical calculations, and the results were compared with experimental measurements of powdered samples. In order to test the behavior of such compounds under thermal neutron irradiation, we preliminary exposed one of the two compounds in the e_LiBANS facility at the Torino Physics Department. Preliminary results are reported
Second Harmonic Generation Behavior of Two New d-Ribose/d-Fructose and Metal Halogenide-Based Coordination Compounds and Comparison to d-Fructose and d-Galactose Analogues: An Experimental and Theoretical Approach
On a Composite Obtained by Thermolysis of Cu-Doped Glycine
Metal-doped carbonaceous materials have garnered significant attention in recent years due to their versatile applications in various fields, including catalysis, energy storage, environmental remediation, electronics, and sensors, as well as reinforcement. This study investigates the synthesis and characterization of a composite material featuring a carbonaceous matrix doped with copper, focusing on the thermolysis of glycine as a precursor. The synthesis methodology involved utilizing glycine and copper acetate monohydrate in varying ratios, with the mixture subjected to heating in ceramic crucibles at temperatures ranging from 450 to 550 °C, with pyrolysis yields over the 5 to 39% interval. The pristine and Cu-doped samples obtained at 500 °C underwent characterization using a diverse array of techniques, including scanning and transmission electron microscopies, multi-elemental analysis by energy dispersive X-ray spectroscopy, CHNS elemental analysis, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared and Raman spectroscopies, ultraviolet-visible spectroscopy, and terahertz time-domain spectroscopy, along with conductivity measurements. Under optimized conditions, copper (at 6.5%) was present primarily in the free metallic form, accompanied by traces of tenorite (CuO) and cuprite (Cu2O). The carbonaceous matrix exhibited a 6:1 ratio of graphitic carbon to a carbon-nitrogen compound with the formula C2H2N2O2, such as isomers of diazetidinedione, according to multi-elemental analysis results. Conductivity measurements disclosed a significant increase in conductivity compared to the product of glycine thermolysis, showcasing the enhanced electrical properties of the new composite. Additionally, terahertz measurements showed the potential of the material as a broadband absorber for the fabrication of terahertz devices and provided compelling evidence of a significant improvement in radiation absorption upon copper doping. In conclusion, this research sheds light on the promising properties of copper-doped carbonaceous composites obtained by glycine pyrolysis, offering insights into their potential applications in emerging technological domains