10 research outputs found

    Endothelial APC/PAR1 distinctly regulates cytokine-induced pro-inflammatory VCAM-1 expression

    No full text
    Introduction: Dysfunction of the endothelium impairs its' protective role and promotes inflammation and progression of vascular diseases. Activated Protein C (APC) elicits endothelial cytoprotective responses including barrier stabilization, anti-inflammatory and anti-apoptotic responses through the activation of the G protein-coupled receptor (GPCR) protease-activated receptor-1 (PAR1) and is a promising therapeutic. Despite recent advancements in developing new Activated protein C variants with clinical potential, the mechanism by which APC/PAR1 promotes different cytoprotective responses remains unclear and is important to understand to advance Activated protein C and new targets as future therapeutics. Here we examined the mechanisms by which APC/PAR1 attenuates cytokine-induced pro-inflammatory vascular cell adhesion molecule (VCAM-1) expression, a key mediator of endothelial inflammatory responses. Methods: Quantitative multiplexed mass spectrometry analysis of Activated protein C treated endothelial cells, endothelial cell transcriptomics database (EndoDB) online repository queries, biochemical measurements of protein expression, quantitative real-time polymerase chain reaction (RT-qPCR) measurement of mRNA transcript abundance, pharmacological inhibitors and siRNA transfections of human cultured endothelial cells. Results: Here we report that Activated Protein C modulates phosphorylation of tumor necrosis factor (TNF)-α signaling pathway components and attenuates of TNF-α induced VCAM-1 expression independent of mRNA stability. Unexpectedly, we found a critical role for the G protein-coupled receptor co-receptor sphingosine-1 phosphate receptor-1 (S1PR1) and the G protein receptor kinase-2 (GRK2) in mediating APC/PAR1 anti-inflammatory responses in endothelial cells. Discussion: This study provides new knowledge of the mechanisms by which different APC/PAR1 cytoprotective responses are mediated through discrete β-arrestin-2-driven signaling pathways modulated by specific G protein-coupled receptor co-receptors and GRKs

    aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete β-arrestin-2 mediated SphK1-S1PR1-Akt signaling axis

    Full text link
    Endothelial dysfunction is associated with multiple vascular diseases and lacks effective treatments. Activated Protein C (aPC) is a promising biotherapeutic that signals via protease-activated receptor-1 (PAR1) to promote diverse cytoprotective responses, including endothelial barrier stabilization, anti-inflammatory and anti-apoptotic activities, which is facilitated by co-receptors. We showed that aPC-activated PAR1 signals preferentially via b-arrestin-2 (b-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to enhance barrier protection. However, the mechanisms by which aPC/PAR1 promotes other cytoprotective responses are poorly understood. Here we define a novel β-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. We show that PAR1 and S1PR1 co-exist in caveolin-1-rich microdomains basally and aPC markedly increases S1PR1-caveolin-1 co-association. Moreover, aPC stimulates b-arr2-dependent SphK1 activation independent of Dvl2, which is critical for S1PR1 transactivation. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete b-arr2-driven signaling pathways in caveolae.</jats:p

    aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2–mediated SphK1-S1PR1-Akt signaling axis

    Full text link
    Significance Activated protein C (aPC) is a promising therapeutic and exhibits multiple pharmacological benefits in preclinical studies, including in sepsis. aPC activates protease-activated receptor-1 (PAR1) and signals via β-arrestin-2 to promote endothelial barrier stabilization and anti-inflammatory and anti-apoptotic activities. The present study demonstrates that different aPC/PAR1 cytoprotective responses are uniquely regulated by discrete β-arrestin-2–mediated signaling pathways that are modulated by coreceptors. Thus, β-arrestin-2 functions as a central driver of distinct, aPC/PAR1-induced cytoprotective signaling pathways to control barrier protection and anti-apoptotic activities.</jats:p

    aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2–mediated SphK1-S1PR1-Akt signaling axis

    No full text
    Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via β-arrestin-2 (β-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a β-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates β-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on β-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-β-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, β-arr2-driven signaling pathways in caveolae
    corecore