555 research outputs found
Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems
In this paper we review basic and emerging models and associated algorithms
for large-scale tensor networks, especially Tensor Train (TT) decompositions
using novel mathematical and graphical representations. We discus the concept
of tensorization (i.e., creating very high-order tensors from lower-order
original data) and super compression of data achieved via quantized tensor
train (QTT) networks. The purpose of a tensorization and quantization is to
achieve, via low-rank tensor approximations "super" compression, and
meaningful, compact representation of structured data. The main objective of
this paper is to show how tensor networks can be used to solve a wide class of
big data optimization problems (that are far from tractable by classical
numerical methods) by applying tensorization and performing all operations
using relatively small size matrices and tensors and applying iteratively
optimized and approximative tensor contractions.
Keywords: Tensor networks, tensor train (TT) decompositions, matrix product
states (MPS), matrix product operators (MPO), basic tensor operations,
tensorization, distributed representation od data optimization problems for
very large-scale problems: generalized eigenvalue decomposition (GEVD),
PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204
Very Large-Scale Singular Value Decomposition Using Tensor Train Networks
We propose new algorithms for singular value decomposition (SVD) of very
large-scale matrices based on a low-rank tensor approximation technique called
the tensor train (TT) format. The proposed algorithms can compute several
dominant singular values and corresponding singular vectors for large-scale
structured matrices given in a TT format. The computational complexity of the
proposed methods scales logarithmically with the matrix size under the
assumption that both the matrix and the singular vectors admit low-rank TT
decompositions. The proposed methods, which are called the alternating least
squares for SVD (ALS-SVD) and modified alternating least squares for SVD
(MALS-SVD), compute the left and right singular vectors approximately through
block TT decompositions. The very large-scale optimization problem is reduced
to sequential small-scale optimization problems, and each core tensor of the
block TT decompositions can be updated by applying any standard optimization
methods. The optimal ranks of the block TT decompositions are determined
adaptively during iteration process, so that we can achieve high approximation
accuracy. Extensive numerical simulations are conducted for several types of
TT-structured matrices such as Hilbert matrix, Toeplitz matrix, random matrix
with prescribed singular values, and tridiagonal matrix. The simulation results
demonstrate the effectiveness of the proposed methods compared with standard
SVD algorithms and TT-based algorithms developed for symmetric eigenvalue
decomposition
Stable, Robust and Super Fast Reconstruction of Tensors Using Multi-Way Projections
In the framework of multidimensional Compressed Sensing (CS), we introduce an
analytical reconstruction formula that allows one to recover an th-order
data tensor
from a reduced set of multi-way compressive measurements by exploiting its low
multilinear-rank structure. Moreover, we show that, an interesting property of
multi-way measurements allows us to build the reconstruction based on
compressive linear measurements taken only in two selected modes, independently
of the tensor order . In addition, it is proved that, in the matrix case and
in a particular case with rd-order tensors where the same 2D sensor operator
is applied to all mode-3 slices, the proposed reconstruction
is stable in the sense that the approximation
error is comparable to the one provided by the best low-multilinear-rank
approximation, where is a threshold parameter that controls the
approximation error. Through the analysis of the upper bound of the
approximation error we show that, in the 2D case, an optimal value for the
threshold parameter exists, which is confirmed by our
simulation results. On the other hand, our experiments on 3D datasets show that
very good reconstructions are obtained using , which means that this
parameter does not need to be tuned. Our extensive simulation results
demonstrate the stability and robustness of the method when it is applied to
real-world 2D and 3D signals. A comparison with state-of-the-arts sparsity
based CS methods specialized for multidimensional signals is also included. A
very attractive characteristic of the proposed method is that it provides a
direct computation, i.e. it is non-iterative in contrast to all existing
sparsity based CS algorithms, thus providing super fast computations, even for
large datasets.Comment: Submitted to IEEE Transactions on Signal Processin
Multi-tensor Completion for Estimating Missing Values in Video Data
Many tensor-based data completion methods aim to solve image and video
in-painting problems. But, all methods were only developed for a single
dataset. In most of real applications, we can usually obtain more than one
dataset to reflect one phenomenon, and all the datasets are mutually related in
some sense. Thus one question raised whether such the relationship can improve
the performance of data completion or not? In the paper, we proposed a novel
and efficient method by exploiting the relationship among datasets for
multi-video data completion. Numerical results show that the proposed method
significantly improve the performance of video in-painting, particularly in the
case of very high missing percentage
Wymiary kompetencji informacyjno-medialnych nauczyciela
Wydanie publikacji zostaĆo sfinansowane przez WydziaĆ Pedagogiki i Psychologii Uniwersytetu w BiaĆymstokuWydziaĆ Pedagogiki i Psychologii Uniwersytetu w BiaĆymstok
Nauczyciele jako twĂłrcy edukacyjnego klimatu klasy szkolnej
Wydanie publikacji zostaĆo sfinansowane przez WydziaĆ Pedagogiki i Psychologii Uniwersytetu w BiaĆymstokuWydziaĆ Pedagogiki i Psychologii Uniwersytetu w BiaĆymstok
- âŠ