5 research outputs found

    Distinctively variable sequence-based nuclear DNA markers for multilocus phylogeography of the soybean- and rice-infecting fungal pathogen Rhizoctonia solani AG-1 IA

    No full text
    A series of multilocus sequence-based nuclear DNA markers was developed to infer the phylogeographical history of the Basidiomycetous fungal pathogen Rhizoctonia solani AG-1 IA infecting rice and soybean worldwide. The strategy was based on sequencing of cloned genomic DNA fragments (previously used as RFLP probes) and subsequent screening of fungal isolates to detect single nucleotide polymorphisms (SNPs). Ten primer pairs were designed based on these sequences, which resulted in PCR amplification of 200-320 bp size products and polymorphic sequences in all markers analyzed. By direct sequencing we identified both homokaryon and heterokaryon (i.e. dikaryon) isolates at each marker. Cloning the PCR products effectively estimated the allelic phase from heterokaryotic isolates. Information content varied among markers from 0.5 to 5.9 mutations per 100 bp. Thus, the former RFLP codominant probes were successfully converted into six distinctively variable sequence-based nuclear DNA markers. Rather than discarding low polymorphism loci, the combination of these distinctively variable anonymous nuclear markers would constitute an asset for the unbiased estimate of the phylogeographical parameters such as population sizes and divergent times, providing a more reliable species history that shaped the current population structure of R. solani AG-1 IA.ISSN:1415-4757ISSN:1678-468

    CHARACTERIZATION OF MICROSATELLITE LOCI IN HIMATANTHUS DRASTICUS (APOCYNACEAE), A MEDICINAL PLANT FROM THE BRAZILIAN SAVANNA

    Get PDF
    Premise of the study: We developed a new set of microsatellite markers for studying the genome of the janaguba tree, Himatanthus drasticus (Mart.) Plumel, which is used in folk medicine in northeastern Brazil. These novel markers are being used to evaluate the effect of harvesting on the genetic structure and diversity of natural populations of this species. Methods and Results: Microsatellite loci were isolated from an enriched H. drasticus genomic library. Nine primer pairs successfully amplified polymorphic microsatellite regions, with an average of 8.5 alleles per locus. The average values of observed and expected heterozygosity were 0.456 and 0.601, respectively. Conclusions: The microsatellite markers described here are valuable tools for population genetics studies of H. drasticus. The majority of the primers also amplified sequences in the genome of another species of the same genus. This new set of markers may be useful in designing a genetic conservation strategy and a sustainable management plan for the species

    Population genetic analysis of Giardia duodenalis: genetic diversity and haplotype sharing between clinical and environmental sources

    No full text
    Giardia duodenalis is a flagellated intestinal protozoan responsible for infections in various hosts including humans and several wild and domestic animals. Few studies have correlated environmental contamination and clinical infections in the same region. The aim of this study was to compare groups of Giardia duodenalis from clinical and environmental sources through population genetic analyses to verify haplotype sharing and the degree of genetic similarity among populations from clinical and environmental sources in the metropolitan region of Campinas. The results showed high diversity of haplotypes and substantial genetic similarity between clinical and environmental groups of G.duodenalis. We demonstrated sharing of Giardia genotypes among the different populations studied. The comparison between veterinary and human sequences led us to identify new zoonotic genotypes, including human isolates from genetic assemblage C. The application of a population genetic analysis in epidemiological studies allows quantification of the degree of genetic similarity among populations of Giardia duodenalis from different sources of contamination. The genetic similarity of Giardia isolates among human, veterinary, and environmental groups reinforced the correlation between clinical and environmental isolates in this region, which is of great importance for public health62CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP577032/2008-9; 304914/2010-02008/52197-4; 2008/52197-4; 2011/50413-
    corecore