7 research outputs found
Inaccuracy Determination in Mathematical Model of Labsocs Efficiency Calibration Program
The study of radioactive materials quantitative inaccuracy determination caused by semiconductor detector aging is presented in the article. The study was conducted using a p- type coaxial GC 1518 detector made of a high-purity germanium produced by Canberra Company and LabSOCS mathematical efficiency calibration program. It was discovered that during 8 years of operation the efficiency of the detector had decreased due to increase of the dead layer of the germanium crystal. Increasing the thickness of the dead layer leads to 2 effects, which influence on the efficiency decrease: the shielding effect and the effect of reducing the active volume of the germanium crystal. It is found that the shielding effect contributes at energies below 88 keV. At energies above 88 keV the inaccuracy is connected with the decrease of the germanium crystal active volume, caused by lithium thermal diffusion
Self-propagating high-temperature synthesis of the high- current emission lanthanum and niobium contained ceramics
The paper describes the production of metal-ceramic high-current emitters containing lanthanum hexaboride LaB[6] by self-propagating high-temperature synthesis. Tests of emitters as explosive-emission cathodes in an OMEGA-350 microsecond accelerator are presented. Experiments show that when a metal-ceramic cathode is used, the emitted energy was 12-17% higher than that produced by tungsten and graphite cathodes and the beam "signature" is a circle with a small (~ 15%) variation in radius
Synthesis and properties of the materials obtained by SHS mode for radiation protection
The article shows the process of protective composite materials manufacturing. Also, the analysis of experimental results concerning the composite materials protective properties is given. The advantages of SHS method are considered in comparison with traditional materials. The uniqueness of SHS obtained products based on combination of nuclear-physical properties and parameters is presented
Mechanical activation influence on the morphological properties of La[2]O[3]-TiO[2]-B
The influence of mechanical activation of the powder mixture used to obtain the high-perfomance cathode for accelerating engineering with the SHS-method has been explored. The mechanically processed mixtures have been morphologically analyzed. The optimal modes of mechanical activation have been determined for the mixture