1,064 research outputs found
Distributed formation tracking control of multiple car-like robots
In this thesis, distributed formation tracking control of multiple car-like robots is studied. Each vehicle can communicate and send or receive states information to or from a portion of other vehicles. The communication topology is characterized by a graph. Each vehicle is considered as a vertex in the graph and each communication link is considered as an edge in the graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for vehicle kinematics are designed with the aid of graph theory. Two control algorithms are designed based on the chained-form system and its transformation respectively. Both algorithms achieve exponential convergence to the desired reference states. Then vehicle dynamics is considered and dynamic controllers are designed with the aid of two types of kinematic-based controllers proposed in the first section. Finally, a special case of switching graph is addressed considering the probability of vehicle disability and links breakage
Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
The effect of temperature on the corrosion behaviours of L360QCS in H₂S, CO₂ and elemental sulphur environments are investigated. The corrosion weight-loss rate, microscopy, chemical compositions and phase compositions of corrosion products are studied by means of the weight-loss analysis, SEM and XRD techniques. As shown, the corrosion rate increased greatly with an increase of the temperature, and the corrosion scale is dropped off easily because of the weak adhesion force between the matrix and the corrosion products. The composition and structure analysed by energy-dispersive x-ray spectroscopy (EDS) and XRD show that the corrosion product scales are composed of cubic FeS and little tetragonal FeS.Исследовано влияние температуры на режимы коррозии L360QCS в атмосферах H₂S, CO₂ и атомарной серы. Скорость коррозии, измеряемая по потере веса, микроскопия, химический и фазовый состав продуктов коррозии определялись анализом потери веса, СЭМ и рентгеноструктурным анализом (РСА). Показано, что скорость коррозии сильно возрастает с температурой, и коррозионная окалина легко отпадает благодаря слабой силе адгезии между матрицей и продуктами коррозии. Исследования состава и структуры методами рентгеноспектрального электронно-зондового микроанализа и РСА показали, что окалины продуктов реакции состоят из кубического FeS и небольшой части тетрагонального FeS.Досліджено вплив температури на режими корозії L360QCS в атмосфері H₂S, CO₂ та атомарної сірки. Швидкість корозії, яка вимірюється за втратами ваги, мікроскопія, хемічний та фазовий склад продуктів корозії визначалися аналізою втрати ваги, СЕМ та рентґеноструктурною аналізою (РСА). Показано, що швидкість корозії сильно збільшується з температурою, і корозійна жужелиця легко відпадає через слабку силу адгезії між матрицею та продуктами корозії. Дослідження складу та структури методами рентґеноспектральної електронно-зондової мікроаналізи та РСА показали, що жужелиці продуктів реакції складаються з кубічного FeS та незначної частки тетрагонального FeS
Virtual Element Methods Without Extrinsic Stabilization
Virtual element methods (VEMs) without extrinsic stabilization in arbitrary
degree of polynomial are developed for second order elliptic problems,
including a nonconforming VEM and a conforming VEM in arbitrary dimension under
the mesh assumption that all the faces of each polytope are simplices. The key
is to construct local -conforming macro finite element spaces
such that the associated projection of the gradient of virtual element
functions is computable, and the projector has a uniform lower bound on
the gradient of virtual element function spaces in norm. Optimal error
estimates are derived for these VEMs. Numerical experiments are provided to
test the VEMs without extrinsic stabilization.Comment: 25 pages, 8 figure
Geometric Decomposition and Efficient Implementation of High Order Face and Edge Elements
This paper delves into the world of high-order curl and div elements within
finite element methods, providing valuable insights into their geometric
properties, indexing management, and practical implementation considerations.
It first explores the decomposition of Lagrange finite elements. The discussion
then extends to H(div)-conforming finite elements and H(curl)-conforming finite
element spaces by choosing different frames at different sub-simplex. The
required tangential continuity or normal continuity will be imposed by
appropriate choices of the tangential and normal basis. The paper concludes
with a focus on efficient indexing management strategies for degrees of
freedom, offering practical guidance to researchers and engineers. It serves as
a comprehensive resource that bridges the gap between theory and practice in
the realm of high-order curl and div elements in finite element methods, which
are vital for solving vector field problems and understanding electromagnetic
phenomena.Comment: 25 pages, 8 figure
Anisotropic analysis of VEM for time-harmonic Maxwell equations in inhomogeneous media with low regularity
It has been extensively studied in the literature that solving Maxwell
equations is very sensitive to the mesh structure, space conformity and
solution regularity. Roughly speaking, for almost all the methods in the
literature, optimal convergence for low-regularity solutions heavily relies on
conforming spaces and highly-regular simplicial meshes. This can be a
significant limitation for many popular methods based on polytopal meshes in
the case of inhomogeneous media, as the discontinuity of electromagnetic
parameters can lead to quite low regularity of solutions near media interfaces,
and potentially worsened by geometric singularities, making many popular
methods based on broken spaces, non-conforming or polytopal meshes particularly
challenging to apply. In this article, we present a virtual element method for
solving an indefinite time-harmonic Maxwell equation in 2D inhomogeneous media
with quite arbitrary polytopal meshes, and the media interface is allowed to
have geometric singularity to cause low regularity. There are two key
novelties: (i) the proposed method is theoretically guaranteed to achieve
robust optimal convergence for solutions with merely
regularity, ; (ii) the polytopal element shape can be highly
anisotropic and shrinking, and an explicit formula is established to describe
the relationship between the shape regularity and solution regularity.
Extensive numerical experiments will be given to demonstrate the effectiveness
of the proposed method
- …